Отчет об анализе размера, доли и тенденций глобального рынка платформ для обработки и анализа данных — обзор отрасли и прогноз до 2032 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Бесплатный пример отчета Бесплатный пример отчета Узнать перед покупкой Узнать перед покупкой Купить сейчас Купить сейчас

Отчет об анализе размера, доли и тенденций глобального рынка платформ для обработки и анализа данных — обзор отрасли и прогноз до 2032 года

  • ICT
  • Upcoming Report
  • Oct 2024
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60

Global Data Science Platform Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 204.58 Billion USD 1,568.85 Billion 2024 2032
Diagram Прогнозируемый период
2025 –2032
Diagram Размер рынка (базовый год)
USD 204.58 Billion
Diagram Размер рынка (прогнозируемый год)
USD 1,568.85 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • IBM (U.S.)
  • DataRobot Inc. (U.S.)
  • apheris AI GmbH (Germany)
  • The Digital Talent Ecosystem (U.S.)
  • Databand (Israel)

Сегментация мирового рынка платформ для обработки и анализа данных по типу компонента (платформа, услуги, поддержка и обслуживание, консалтинг, развертывание и интеграция), функциональному разделению (маркетинг, продажи, логистика, финансы и бухгалтерский учет, поддержка клиентов, бизнес-операции и другие), модели развертывания (локально и в облаке), размеру организации (малые и средние предприятия (МСП) и крупные предприятия), приложению для конечного пользователя (банковское дело, финансовые услуги и страхование (BFSI), телекоммуникации и ИТ, розничная торговля и электронная коммерция, здравоохранение и науки о жизни, производство, энергетика и коммунальные услуги, СМИ и развлечения, транспорт и логистика, правительство и другие) — отраслевые тенденции и прогноз до 2032 года

Платформа науки о данных Market Z

 Размер рынка платформ науки о данных    

  • Объем мирового рынка платформ для обработки и анализа данных оценивается в 204,58 млрд долларов США в 2024 году и, как ожидается , достигнет 1568,85 млрд долларов США к 2032 году при среднегодовом темпе роста 29,00% в прогнозируемый период.
  • Этот рост обусловлен такими факторами, как экспоненциальный рост генерации данных, достижения в области искусственного интеллекта (ИИ) и машинного обучения (МО), широкое внедрение облачных вычислений и растущий акцент на принятии решений на основе данных.

Анализ рынка платформ науки о данных

  • Платформа науки о данных — это интегрированная среда, которая предоставляет инструменты, библиотеки и инфраструктуру для специалистов по данным для разработки, управления и выполнения проектов, основанных на данных. Она позволяет пользователям собирать, анализировать и визуализировать большие наборы данных, одновременно облегчая сотрудничество между командами
  • Эти платформы часто поддерживают различные языки программирования (например, Python, R и SQL), алгоритмы машинного обучения и конвейеры данных для эффективного построения и развертывания моделей.
  • Платформы для обработки и анализа данных также предлагают такие возможности, как контроль версий, автоматизация и масштабируемость, что позволяет организациям использовать структурированную и воспроизводимую информацию из данных для принятия решений.
  • Ожидается, что Северная Америка будет доминировать на рынке платформ для обработки данных с долей в 34,6% благодаря хорошо развитой технологической инфраструктуре, которая поддерживает рабочие нагрузки с интенсивным использованием данных и облегчает внедрение платформ для обработки данных.
  • Ожидается, что Азиатско-Тихоокеанский регион станет самым быстрорастущим регионом на рынке платформ для анализа данных в течение прогнозируемого периода из-за резкого увеличения объемов корпоративных и потребительских данных, что создаст спрос на передовые аналитические решения.
  • Ожидается, что сегмент платформы будет доминировать на рынке с долей рынка 83,9% благодаря своим технологическим усовершенствованиям, таким как интеллектуальный анализ данных, передовые вычисления и робототехника, которые значительно стимулируют рост сегмента. Эти усовершенствования позволяют специалистам по данным создавать, обучать, масштабировать и делиться алгоритмами машинного обучения более эффективно

Область применения отчета и сегментация рынка платформы науки о данных      

Атрибуты

Ключевые рыночные данные платформы науки о данных

Охваченные сегменты

  • По типу компонента:  платформа, услуги, поддержка и обслуживание, консалтинг, развертывание и интеграция
  • По функциональному разделению:  маркетинг, продажи, логистика, финансы и бухгалтерский учет, поддержка клиентов, бизнес-операции и другие
  • По модели развертывания:  локально и в облаке
  • По размеру организации : малые и средние предприятия (МСП) и крупные предприятия
  • По области применения для конечных пользователей:  банковское дело, финансовые услуги и страхование (BFSI), телекоммуникации и ИТ, розничная торговля и электронная коммерция, здравоохранение и науки о жизни, производство, энергетика и коммунальные услуги, СМИ и развлечения, транспорт и логистика, государственное управление и другие

Страны, охваченные

Северная Америка

  • НАС
  • Канада
  • Мексика

Европа

  • Германия
  • Франция
  • Великобритания
  • Нидерланды
  • Швейцария
  • Бельгия
  • Россия
  • Италия
  • Испания
  • Турция
  • Остальная Европа

Азиатско-Тихоокеанский регион

  • Китай
  • Япония
  • Индия
  • Южная Корея
  • Сингапур
  • Малайзия
  • Австралия
  • Таиланд
  • Индонезия
  • Филиппины
  • Остальная часть Азиатско-Тихоокеанского региона

Ближний Восток и Африка

  • Саудовская Аравия
  • ОАЭ
  • ЮАР
  • Египет
  • Израиль
  • Остальной Ближний Восток и Африка

Южная Америка

  • Бразилия
  • Аргентина
  • Остальная часть Южной Америки

Ключевые игроки рынка

  • IBM (США)
  • DataRobot Inc. , (США)
  • apheris AI GmbH (Германия)
  • Экосистема цифровых талантов (США)
  • Databand (Израиль)
  • dotData (США)
  • Explorium Inc., (США)
  • Нугата (Израиль)
  • Tecton Inc., (США)
  • Spell Designs Pty Ltd (США)
  • Arrikto Inc., (США)
  • Итеративный (США)
  • Google Inc (США)
  • Майкрософт (США)
  • SAS Institute Inc., (США)
  • Amazon Web Services, Inc. (США)
  • MathWorks, Inc. (США)
  • Cloudera Inc., (США)
  • Teradata (США)
  • TIBCO Software Inc. (США)

Возможности рынка

  • Инновации с открытым исходным кодом
  • Достижения в области предиктивной аналитики

Информационные наборы данных с добавленной стоимостью

Помимо таких рыночных данных, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, рыночный отчет, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ потребления продукции и анализ пестицидов.

Тенденции рынка платформ науки о данных

«Ускоренная интеграция ИИ и консолидация платформ»

  • На мировом рынке платформ для обработки и анализа данных наблюдается значительный сдвиг в сторону решений на основе искусственного интеллекта и консолидации платформ.
  • Компании все чаще интегрируют передовые возможности ИИ в свои платформы обработки данных для улучшения автоматизации, предиктивной аналитики и процессов принятия решений. 
    • Например, недавнее приобретение компанией Databricks компании Neon, стартапа в области баз данных, специализирующегося на технологии на основе PostgreSQL, является примером этой тенденции.
  • Этот стратегический шаг направлен на расширение возможностей Databricks по управлению данными на основе искусственного интеллекта, что позволит предприятиям более эффективно создавать ботов и агентов на основе искусственного интеллекта.
  • Ожидается, что такая консолидация позволит оптимизировать рабочие процессы обработки данных и обеспечить более целостные решения для удовлетворения растущего спроса на информацию, полученную с помощью искусственного интеллекта.

Динамика рынка платформ науки о данных

Водитель

«Экспоненциальный рост генерации данных»

  • Распространение цифровой деятельности привело к беспрецедентному росту генерации данных, что обусловило спрос на надежные платформы для науки о данных.
  • С развитием устройств Интернета вещей, социальных сетей и электронной коммерции организации ежедневно накапливают огромные объемы данных.
  • Чтобы эффективно использовать эти данные, компаниям требуются сложные инструменты и платформы для анализа, обработки и получения практических идей. 
    • Например, компания Databricks сообщила о росте выручки на 60% по сравнению с прошлым годом, что обусловлено растущей потребностью в передовых решениях для анализа данных для управления неструктурированными данными и поддержки приложений ИИ.
  • Этот всплеск данных подчеркивает необходимость масштабируемых и эффективных платформ для науки о данных.

Возможность

«Демократизация инструментов искусственного интеллекта и машинного обучения»

  • Демократизация инструментов искусственного интеллекта (ИИ) и машинного обучения (МО) открывает значительные возможности для рынка платформ для обработки и анализа данных.
  • Поскольку эти технологии становятся все более доступными, организации получают возможность использовать расширенную аналитику без необходимости иметь обширные знания.
  • Примером этой тенденции является сотрудничество Microsoft с NVIDIA по продвижению инноваций в здравоохранении и биологических науках с использованием облачного ИИ и ускоренных вычислений.
  • Целью партнерства является улучшение ухода за пациентами за счет ускорения доступа к точной медицине и диагностике на основе искусственного интеллекта. 
  • Подобные инициативы подчеркивают потенциал инструментов искусственного интеллекта и машинного обучения для стимулирования инноваций в различных секторах, создавая возможности для платформ науки о данных, чтобы обслуживать более широкую аудиторию.

Сдержанность/Вызов

«Проблемы конфиденциальности и безопасности данных»

  • Несмотря на перспективы роста, проблемы конфиденциальности и безопасности данных создают значительные трудности для внедрения платформ науки о данных.
  • Растущая частота утечек данных и строгие правила, такие как GDPR и CCPA, заставляют организации уделять первостепенное внимание мерам защиты данных. 
    • Например, участившиеся случаи утечки данных в ряде отраслей стали серьезным препятствием для внедрения платформ для обработки и анализа данных.
  • Эти проблемы требуют разработки безопасных и соответствующих требованиям платформ, которые могут снизить риски и обеспечить этичное использование данных, тем самым влияя на динамику рынка.

Масштаб рынка платформ науки о данных

Рынок сегментирован на основе типа компонента, разделения функций, модели развертывания, размера организации и области применения конечным пользователем.

Сегментация

Субсегментация

По типу компонента

  • Платформа
  • Услуги
  • Поддержка и обслуживание
  • Консалтинг
  • Развертывание и интеграция

По функциональному разделению

  • Маркетинг
  • Продажи
  • Логистика
  • Финансы и бухгалтерский учет
  • Поддержка клиентов
  • Бизнес-операции
  • Другие

По модели развертывания

  • Локально
  • На основе облака

По размеру организации

  • Малые и средние предприятия (МСП)
  • Крупные предприятия

По заявлению конечного пользователя

  • Банковское дело, финансовые услуги и страхование (BFSI)
  • Телекоммуникации и ИТ
  • Розничная торговля и электронная коммерция
  • Здравоохранение и науки о жизни
  • Производство
  • Энергетика и коммунальные услуги
  • СМИ и развлечения
  • Транспорт и логистика
  • Правительство
  • Другие

Ожидается, что в 2025 году платформа будет доминировать на рынке с наибольшей долей в сегменте компонентов.

Ожидается, что сегмент платформы будет доминировать на рынке платформ науки о данных с наибольшей долей в 83,4% в 2025 году из-за его технологических усовершенствований, таких как интеллектуальный анализ данных, передовые вычисления и робототехника, которые значительно стимулируют рост сегмента. Эти достижения позволяют специалистам по данным создавать, обучать, масштабировать и обмениваться алгоритмами машинного обучения более эффективно. Автоматизация становится все более популярной в различных отраслях.

Ожидается, что BFSI займет наибольшую долю в сегменте приложений для конечных пользователей в течение прогнозируемого периода.

Ожидается, что в 2025 году сегмент BFSI будет доминировать на рынке с наибольшей долей рынка в 51,31% благодаря все большему использованию аналитики больших данных для улучшения процесса принятия решений, улучшения клиентского опыта и повышения операционной эффективности. С ростом объема финансовых транзакций и взаимодействия с клиентами банки и финансовые учреждения внедряют платформы науки о данных для анализа огромных объемов данных с целью получения аналитических сведений.

Региональный анализ рынка платформ Data Science

«Северная Америка занимает самую большую долю на рынке платформ для обработки и анализа данных»

  • Северная Америка занимает значительную долю мирового рынка платформ для обработки и анализа данных — 34,6%, что обусловлено значительными инвестициями в расширенную аналитику в различных отраслях, включая BFSI (банковское дело, финансовые услуги и страхование), здравоохранение, розничную торговлю и телекоммуникации.
  • Регион может похвастаться хорошо развитой технологической инфраструктурой, поддерживающей рабочие нагрузки с интенсивным использованием данных и способствующей внедрению платформ для обработки данных.
  • Многочисленные отечественные поставщики платформ для обработки и анализа данных занимают значительную долю рынка в Северной Америке, способствуя доминированию региона.
  • Наличие сильной экономики и благоприятной деловой среды еще больше укрепляет позиции Северной Америки как лидера на рынке платформ для обработки и анализа данных.

«Прогнозируется, что в Азиатско-Тихоокеанском регионе будет зарегистрирован самый высокий среднегодовой темп роста на рынке платформ для обработки и анализа данных»

  • Такие страны, как Китай, Индия и Индонезия, переживают значительную цифровую трансформацию, что приводит к более широкому внедрению платформ науки о данных.
  • Такие меры, как План развития искусственного интеллекта нового поколения в Китае и Национальная стратегия Индии в области искусственного интеллекта, способствуют росту платформ науки о данных.
  • В регионе наблюдается колоссальный рост объемов корпоративных и потребительских данных, что создает спрос на передовые аналитические решения.
  • Такие учреждения, как ИИТ Гувахати, запускают программы по науке о данных, способствуя повышению квалификации рабочей силы, что еще больше ускоряет рост рынка.
  • Рост инвестиций в технологии искусственного интеллекта и машинного обучения стимулирует внедрение платформ науки о данных в различных секторах.

Доля рынка платформы науки о данных

Конкурентная среда рынка содержит сведения о конкурентах. Включены сведения о компании, ее финансах, полученном доходе, рыночном потенциале, инвестициях в исследования и разработки, новых рыночных инициативах, глобальном присутствии, производственных площадках и объектах, производственных мощностях, сильных и слабых сторонах компании, запуске продукта, широте и широте продукта, доминировании приложений. Приведенные выше данные касаются только фокуса компаний на рынке.

Основными лидерами рынка, работающими на рынке, являются:

  • IBM (США)
  • DataRobot Inc. , (США)
  • apheris AI GmbH (Германия)
  • Экосистема цифровых талантов (США)
  • Databand (Израиль)
  • dotData (США)
  • Explorium Inc., (США)
  • Нугата (Израиль)
  • Tecton Inc., (США)
  • Spell Designs Pty Ltd (США)
  • Arrikto Inc., (США)
  • Итеративный (США)
  • Google Inc (США)
  • Майкрософт (США)
  • SAS Institute Inc., (США)
  • Amazon Web Services, Inc. (США)
  • MathWorks, Inc. (США)
  • Cloudera Inc., (США)
  • Teradata (США)
  • TIBCO Software Inc. (США)

Последние разработки на мировом рынке платформ для обработки и анализа данных

  • В июне 2024 года корпорация IBM объявила о сотрудничестве с Telefónica Tech. Это сотрудничество будет способствовать внедрению решений в области искусственного интеллекта (ИИ), аналитики и управления данными, а также отвечать непрерывным и динамично развивающимся требованиям предприятий.
  • В марте 2024 года Microsoft объявила о сотрудничестве с NVIDIA для продвижения инноваций в здравоохранении и науках о жизни с использованием облачного ИИ и ускоренных вычислений. Сотрудничество направлено на улучшение ухода за пациентами за счет ускорения доступа к точной медицине и диагностике на основе ИИ, что в конечном итоге приведет к значительным достижениям в отрасли здравоохранения
  • В январе 2023 года Science Applications International Corp. представила платформу науки о данных «Tenjin» — универсальное решение, поддерживающее разработку от low-code до full-code для приложений ИИ и машинного обучения. Tenjin, работающая на базе Dataiku, облегчает весь жизненный цикл разработки моделей ИИ и МО, от развертывания до обучения и автоматизации, а также предлагает передовые инструменты визуализации данных. Эта платформа направлена ​​на упрощение сложных процессов, делая ИИ доступным для более широкого круга предприятий.
  • В октябре 2022 года корпорация IBM выпустила ленточную библиотеку Diamondback — передовое решение для хранения данных, использующее технологию LTO. Этот инновационный продукт может похвастаться впечатляющей емкостью до 27 петабайт (ПБ) хранения данных в одной серверной стойке. Diamondback разработан для удовлетворения растущих потребностей в хранении данных, предлагая масштабируемость и надежность для организаций, которым необходимо безопасно и эффективно управлять большими объемами информации.
  • В июне 2022 года SAS Institute расширил свои возможности, приобретя Kamakura Corporation, что позволило расширить портфель интегрированными решениями по управлению рисками. Это приобретение направлено на предоставление специализированных профессиональных услуг в области управления активами и пассивами (ALM) и других финансовых секторах, включая банковское дело. Объединяя ресурсы и опыт, SAS стремится предлагать комплексные решения, которые решают сложные задачи управления рисками, помогая организациям принимать обоснованные финансовые решения и эффективно ориентироваться в условиях рыночной неопределенности.     

SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

Рынок сегментирован на основе Сегментация мирового рынка платформ для обработки и анализа данных по типу компонента (платформа, услуги, поддержка и обслуживание, консалтинг, развертывание и интеграция), функциональному разделению (маркетинг, продажи, логистика, финансы и бухгалтерский учет, поддержка клиентов, бизнес-операции и другие), модели развертывания (локально и в облаке), размеру организации (малые и средние предприятия (МСП) и крупные предприятия), приложению для конечного пользователя (банковское дело, финансовые услуги и страхование (BFSI), телекоммуникации и ИТ, розничная торговля и электронная коммерция, здравоохранение и науки о жизни, производство, энергетика и коммунальные услуги, СМИ и развлечения, транспорт и логистика, правительство и другие) — отраслевые тенденции и прогноз до 2032 года .
Размер Отчет об анализе размера, доли и тенденций глобального рынка платформ для обработки и анализа данных — обзор отрасли и прогноз до 2032 года в 2024 году оценивался в 204.58 USD Billion долларов США.
Ожидается, что Отчет об анализе размера, доли и тенденций глобального рынка платформ для обработки и анализа данных — обзор отрасли и прогноз до 2032 года будет расти со среднегодовым темпом роста (CAGR) 29% в течение прогнозируемого периода 2025–2032.
Основные участники рынка включают IBM (U.S.), DataRobot Inc. (U.S.), apheris AI GmbH (Germany), The Digital Talent Ecosystem (U.S.), Databand (Israel).
Testimonial