Отчет об анализе размера, доли и тенденций глобального рынка платформ для обработки и анализа данных — обзор отрасли и прогноз до 2031 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Купить сейчас Купить сейчас Узнать перед покупкой Узнать перед покупкой Бесплатный пример отчета Бесплатный пример отчета

Отчет об анализе размера, доли и тенденций глобального рынка платформ для обработки и анализа данных — обзор отрасли и прогноз до 2031 года

  • ICT
  • Upcoming Report
  • Oct 2024
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60

Global Data Science Platform Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Diagram Прогнозируемый период
2024 –2031
Diagram Размер рынка (базовый год)
USD 158.59 Billion
Diagram Размер рынка (прогнозируемый год)
USD 1,216.19 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • List provided in description

>Сегментация мирового рынка платформ для обработки и анализа данных по типу компонента (платформа, услуги, поддержка и обслуживание, консалтинг, развертывание и интеграция), функциональному разделению (маркетинг, продажи, логистика, финансы и бухгалтерский учет, поддержка клиентов, бизнес-операции и другие), модели развертывания (локально и в облаке), размеру организации (малые и средние предприятия (МСП), крупные предприятия), приложению для конечного пользователя (банковское дело, финансовые услуги и страхование (BFSI), телекоммуникации и ИТ, розничная торговля и электронная коммерция, здравоохранение и науки о жизни, производство, энергетика и коммунальные услуги, медиа и развлечения, транспорт и логистика, государственное управление и другие) — отраслевые тенденции и прогноз до 2031 года

Рынок платформы науки о данных

Анализ рынка платформ науки о данных

Рынок платформ для науки о данных переживает стремительный рост благодаря интеграции передовых технологий, таких как искусственный интеллект (ИИ), машинное обучение (МО) и облачные вычисления . Одним из последних методов, движущих рынок, является использование инструментов AutoML (автоматизированное машинное обучение), которые упрощают процесс создания моделей, позволяя компаниям с меньшим опытом эффективно использовать ИИ. Эти платформы позволяют специалистам по данным сосредоточиться на инновациях, в то время как автоматизация обрабатывает повторяющиеся задачи.

Облачные платформы науки о данных, такие как Google Cloud AI и AWS SageMaker, еще больше способствуют масштабируемости и экономической эффективности. Используя облако, компании могут получить доступ к огромной вычислительной мощности по требованию, гарантируя быструю обработку огромных наборов данных.

Еще одним достижением является внедрение инструментов совместной работы, которые позволяют командам одновременно работать над проектами, повышая эффективность и сокращая время выхода на рынок решений ИИ. Эти платформы часто интегрируются с существующими экосистемами данных, что делает их доступными для широкого спектра отраслей, таких как здравоохранение, финансы и розничная торговля. Поскольку организации осознают ценность аналитических данных, спрос на комплексные платформы науки о данных, как ожидается, значительно возрастет, что приведет к росту рынка.

Размер рынка платформ науки о данных

Объем мирового рынка платформ для обработки и анализа данных оценивался в 158,59 млрд долларов США в 2023 году и, по прогнозам, достигнет 1 216,19 млрд долларов США к 2031 году со среднегодовым темпом роста 29,00% в прогнозируемый период с 2024 по 2031 год. Помимо аналитических данных о рынке, таких как рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, рыночный отчет, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ производства и потребления, а также анализ пестицидов.

Тенденции рынка платформ науки о данных

«Расцвет автоматизированного машинного обучения (AutoML)»

Одной из важных тенденций, способствующих росту рынка платформ для науки о данных, является рост автоматизированного машинного обучения (AutoML). Эта технология упрощает и ускоряет процесс разработки моделей, позволяя пользователям с ограниченными знаниями в области науки о данных создавать прогностические модели. Например, в январе 2023 года Science Applications International Corp. представила платформу для науки о данных «Tenjin» — универсальное решение, поддерживающее разработку от low-code до full-code для приложений ИИ и машинного обучения. Tenjin, работающая на базе Dataiku, упрощает весь жизненный цикл разработки моделей ИИ и МО, от развертывания до обучения и автоматизации, а также предлагает передовые инструменты визуализации данных. Эта платформа направлена ​​на упрощение сложных процессов, делая ИИ доступным для более широкого круга предприятий.

Область применения отчета и сегментация рынка платформы науки о данных       

Атрибуты

Ключевые рыночные данные платформы науки о данных

Охваченные сегменты

  • По типу компонента: платформа, услуги, поддержка и обслуживание, консалтинг, развертывание и интеграция
  • По функциональному разделению: маркетинг, продажи, логистика, финансы и бухгалтерский учет, поддержка клиентов, бизнес-операции и другие
  • По модели развертывания: локально и в облаке
  •  Размер организации: Малые и средние предприятия (МСП), крупные предприятия
  • По области применения для конечных пользователей: банковское дело, финансовые услуги и страхование (BFSI), телекоммуникации и ИТ, розничная торговля и электронная коммерция, здравоохранение и науки о жизни, производство, энергетика и коммунальные услуги, СМИ и развлечения, транспорт и логистика, государственное управление и другие

Страны, охваченные

США, Канада и Мексика в Северной Америке, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, Остальная Европа в Европе, Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, Остальная часть Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль, Остальной Ближний Восток и Африка (MEA) как часть Ближнего Востока и Африки (MEA), Бразилия, Аргентина и Остальная часть Южной Америки как часть Южной Америки

Ключевые игроки рынка

IBM (США), DataRobot Inc., (США), apheris AI GmbH (Германия), The Digital Talent Ecosystem (США), Databand (Израиль), dotData (США), Explorium Inc., (США), Noogata (Израиль), Tecton Inc., (США), Spell Designs Pty Ltd (США), Arrikto Inc., (США), Iterative (США), Google Inc (США), Microsoft (США), SAS Institute Inc., (США), Amazon Web Services, Inc. (США), The MathWorks, Inc. (США), Cloudera Inc., (США), Teradata (США), TIBCO Software Inc. (США), ALTERYX, INC. (США), RapidMiner (США), Databricks (США), Snowflake Inc., (США), H2O.ai (США), Altair Inc., (США), Anaconda Inc., (США), SAP SE (США), Domino Data Lab Inc., (США) и Dataiku (США)

Возможности рынка

  • Инновации с открытым исходным кодом
  • Достижения в области предиктивной аналитики

Информационные наборы данных с добавленной стоимостью

Помимо таких рыночных данных, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, рыночный отчет, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ потребления продукции и анализ пестицидов.

Определение рынка платформ науки о данных

Платформа науки о данных — это интегрированная среда, которая предоставляет инструменты, библиотеки и инфраструктуру для специалистов по данным для разработки, управления и выполнения проектов, основанных на данных. Она позволяет пользователям собирать, анализировать и визуализировать большие наборы данных, одновременно облегчая совместную работу между командами. Эти платформы часто поддерживают различные языки программирования (например, Python, R и SQL), алгоритмы машинного обучения и конвейеры данных для эффективного построения и развертывания моделей. Платформы науки о данных также предлагают такие возможности, как контроль версий, автоматизация и масштабируемость, что упрощает организациям использование информации из данных структурированным и повторяемым способом для принятия решений.

Динамика рынка платформ науки о данных

Драйверы

  • Спрос на принятие решений на основе данных

Растущая зависимость от принятия решений на основе данных является основным драйвером рынка платформ науки о данных. Организации во всех отраслях переходят на использование аналитических данных для улучшения стратегии, улучшения взаимодействия с клиентами и оптимизации операций. Платформы науки о данных позволяют компаниям эффективно обрабатывать и анализировать огромные наборы данных, что приводит к более точным и обоснованным решениям. Например, в октябре 2023 года корпорация GoodData представила свою новейшую платформу аналитики данных на основе ИИ, разработанную для улучшения рабочих процессов машинного обучения (ML), ИИ и бизнес-аналитики (BI). Эта платформа включает в себя различные возможности генеративного ИИ, включая виртуального помощника, который предоставляет сводки и аналитику. Оптимизируя процессы обнаружения и разработки данных, она позволяет пользователям быстрее принимать обоснованные решения, в конечном итоге повышая эффективность и результативность в средах, управляемых данными.

  • Рост Больших Данных

Экспоненциальный рост данных, генерируемых из различных источников, таких как устройства IoT, платформы социальных сетей и деятельность в сфере электронной коммерции, является ключевым фактором рынка платформ для науки о данных. Эти огромные объемы неструктурированных и структурированных данных требуют надежных платформ для эффективного хранения, обработки и анализа. Например, в январе 2024 года Databricks запустила новую платформу бизнес-аналитики, специально разработанную для операторов связи и поставщиков сетевых услуг (NSP). Эта инновационная платформа расширяет возможности этих компаний, предоставляя комплексное представление об их сетях, операциях и взаимодействии с клиентами. Что важно, она обеспечивает конфиденциальность данных и защищает конфиденциальную интеллектуальную собственность, позволяя телекоммуникационным компаниям принимать обоснованные решения, сохраняя высокие стандарты безопасности в своих операциях.

Возможности

  • Open-Source Innovation

Open-source innovation significantly enhances the data science platform market by providing accessible tools that foster collaboration and rapid development. Platforms such as Apache Spark and TensorFlow exemplify this trend, allowing data scientists to leverage robust libraries without hefty licensing fees. As organizations seek cost-effective solutions for machine learning and big data processing, they increasingly adopt these open-source frameworks, leading to a surge in community contributions and enhancements. This collaborative environment not only accelerates the development of new features but also attracts a larger talent pool, creating opportunities for businesses to innovate and maintain competitive advantages in a data-driven landscape.

  • Advances in Predictive Analytics

The surge in predictive analytics across healthcare, finance, and retail sectors presents significant opportunities in the data science platform market. In healthcare, predictive models are used to forecast patient outcomes and optimize treatment plans, as seen with tools such as IBM Watson Health. In finance, companies leverage predictive analytics for credit scoring and fraud detection, exemplified by FICO's advanced scoring algorithms. For instance, in October 2022, IBM Corporation launched the Diamondback tape library, an advanced storage solution utilizing LTO technology. This innovative product boasts an impressive capacity of up to 27 petabytes (PB) of data storage within a single server rack. The Diamondback is designed to meet the increasing demands for data storage, offering scalability and reliability for organizations needing to manage vast amounts of information securely and efficiently. As organizations recognize the value of predictive insights for decision-making, the demand for sophisticated data science platforms capable of handling complex modeling and forecasting continues to grow, creating lucrative market prospects.

Restraints/Challenges

  • Data Privacy and Security Concerns

Data privacy and security concerns significantly hinder the data science platform market. As organizations rely more on data analytics, they face mounting pressure to comply with stringent regulations such as GDPR and CCPA. Non-compliance can result in hefty fines and reputational damage, leading organizations to be cautious in their data handling practices. This trepidation restricts the adoption of advanced data science solutions, as companies may prioritize security over innovation. In addition, the need for robust security measures can increase implementation costs and complexity, further deterring organizations from investing in new data science platforms and slowing overall market growth.

  • Lack of Skilled Professionals

A lack of skilled professionals significantly hinders the data science platform market. The rapid evolution of data science technologies has resulted in a substantial talent gap, with many organizations struggling to find qualified data scientists and analysts. This shortage impedes the effective utilization of advanced data science platforms, leading to underperformance in analytics initiatives. Companies often invest in sophisticated tools but cannot maximize their potential due to insufficient expertise in interpreting data and deriving actionable insights. Consequently, this talent deficit stifles innovation, slows project timelines, and ultimately limits market growth as businesses fail to leverage data science capabilities to their fullest extent.

This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.

Data Science Platform Market Scope

The market is segmented on the basis of component type, function division, deployment model, organization size and end user application. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

Component Type

  • Platform
  • Services

Professional Services

  • Support and Maintenance
  • Consulting
  • Deployment and Integration

Managed Services

 Function Division

  • Marketing
  • Sales
  • Logistics
  • Finance and Accounting
  • Customer Support
  • Business Operations
  • Others

 Deployment Model

  • On-Premises
  • Cloud based

 Organization Size

  • Small and Medium-sized Enterprises (SMEs)
  • Large Enterprises

 End User Application

  • Banking, Financial Services, and Insurance (BFSI)
  • Telecom and IT
  • Retail and E-commerce
  • Healthcare and Life sciences
  • Manufacturing
  • Energy and Utilities
  • Media and Entertainment
  • Transportation and Logistics
  • Government
  • Others

Data Science Platform Market Regional Analysis

The market is analyzed and market size insights and trends are provided by component type, function division, deployment model, organization size and end user application as referenced above.

The countries covered in the market report are U.S., Canada, Mexico in North America, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in Asia-Pacific (APAC), Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).

North America is expected to dominate the data science platform market due to the presence of a well-established infrastructure and low labor costs in the advancing countries. Moreover, the effective after-sale services offered by manufacturers within the economies are further estimated to accelerate the expansion over the forecast period.

Asia-Pacific is expected to witness significant growth during the forecast period due to rapid growth in the oil and gas exploration operation in the area within the region. China's large base for producing electronics items makes it a significant contributor to the regional market expansion.

The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.

Data Science Platform Market Share

The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.

Data Science Platform Market Leaders Operating in the Market Are:

  • IBM (U.S.)
  • DataRobot Inc., (U.S.)
  • apheris AI GmbH (Germany)
  • The Digital Talent Ecosystem (U.S.)
  • Databand (Israel)
  • dotData (U.S.)
  • Explorium Inc., (U.S.)
  • Noogata (Israel)
  • Tecton Inc., (U.S.)
  • Spell Designs Pty Ltd (U.S.)
  • Arrikto Inc., (U.S.)
  • Iterative (U.S.)
  • Google Inc (U.S.)
  • Microsoft (U.S.)
  • SAS Institute Inc., (U.S.)
  • Amazon Web Services, Inc. (U.S.)
  • The MathWorks, Inc. (U.S.)
  • Cloudera Inc., (U.S.)
  • Teradata (U.S.)
  • TIBCO Software Inc. (U.S.)
  • ALTERYX, INC. (U.S.)
  • RapidMiner (U.S.),
  • Databricks (U.S.)
  • Snowflake Inc., (U.S.)
  • H2O.ai (США)
  • Altair Inc., (США)
  • Anaconda Inc., (США)
  • SAP SE (США)
  • Domino Data Lab Inc., (США)
  • Датаику (США)

Последние разработки на рынке платформ для обработки и анализа данных

  • В июне 2024 года корпорация IBM объявила о стратегическом сотрудничестве с Telefónica Tech, направленном на стимулирование внедрения передовых решений в области искусственного интеллекта (ИИ), аналитики и управления данными. Это партнерство направлено на удовлетворение меняющихся потребностей предприятий, позволяя им использовать передовые технологии для улучшения процесса принятия решений, повышения операционной эффективности и улучшения клиентского опыта во все более сложной бизнес-среде.
  • В марте 2024 года Microsoft объявила о сотрудничестве с NVIDIA, направленном на улучшение инноваций в здравоохранении и науках о жизни с помощью облачного ИИ и ускоренных вычислительных технологий. Это партнерство направлено на революцию в уходе за пациентами за счет ускорения доступа к точной медицине и диагностике на основе ИИ. Ожидается, что инициатива значительно продвинет отрасль здравоохранения за счет предоставления более быстрых и точных решений для диагностики и лечения пациентов, что в конечном итоге улучшит результаты лечения
  • В январе 2023 года Science Applications International Corp. представила платформу науки о данных «Tenjin» — универсальное решение, поддерживающее разработку от low-code до full-code для приложений ИИ и машинного обучения. Tenjin, работающая на базе Dataiku, облегчает весь жизненный цикл разработки моделей ИИ и МО, от развертывания до обучения и автоматизации, а также предлагает передовые инструменты визуализации данных. Эта платформа направлена ​​на упрощение сложных процессов, делая ИИ доступным для более широкого круга предприятий.
  • В октябре 2022 года корпорация IBM выпустила ленточную библиотеку Diamondback — передовое решение для хранения данных, использующее технологию LTO. Этот инновационный продукт может похвастаться впечатляющей емкостью до 27 петабайт (ПБ) хранения данных в одной серверной стойке. Diamondback разработан для удовлетворения растущих потребностей в хранении данных, предлагая масштабируемость и надежность для организаций, которым необходимо безопасно и эффективно управлять большими объемами информации.
  • В июне 2022 года SAS Institute расширил свои возможности, приобретя Kamakura Corporation, что позволило расширить портфель интегрированными решениями по управлению рисками. Это приобретение направлено на предоставление специализированных профессиональных услуг в области управления активами и пассивами (ALM) и других финансовых секторах, включая банковское дело. Объединяя ресурсы и опыт, SAS стремится предлагать комплексные решения, которые решают сложные задачи управления рисками, помогая организациям принимать обоснованные финансовые решения и эффективно ориентироваться в условиях рыночной неопределенности.


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

The market is segmented based on Segmentation, By Component Type (Platform, Services, Support and Maintenance, Consulting, and Deployment and Integration), Function Division (Marketing, Sales, Logistics, Finance and Accounting, Customer Support, Business Operations, and Others), Deployment Model (On-Premises and Cloud based), Organization Size (Small and Medium-sized Enterprises (SMEs), Large Enterprises), End User Application (Banking, Financial Services, and Insurance (BFSI), Telecom and IT, Retail and E-commerce, Healthcare and Life sciences, Manufacturing, Energy and Utilities, Media and Entertainment, Transportation and Logistics, Government, and Others) – Industry Trends and Forecast to 2031 .
The Global Data Science Platform Market size was valued at USD 158.59 USD Billion in 2023.
The Global Data Science Platform Market is projected to grow at a CAGR of 29% during the forecast period of 2024 to 2031.
The major players operating in the market include , List provided in description ,.
The market report covers data from the U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.