Рынок предиктивного технического обслуживания в Азиатско-Тихоокеанском регионе – тенденции отрасли и прогноз до 2029 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Купить сейчас Купить сейчас Узнать перед покупкой Узнать перед покупкой Бесплатный пример отчета Бесплатный пример отчета

Рынок предиктивного технического обслуживания в Азиатско-Тихоокеанском регионе – тенденции отрасли и прогноз до 2029 года

  • ICT
  • Upcoming Report
  • Nov 2022
  • Asia-Pacific
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60

>Рынок предиктивного технического обслуживания в Азиатско-Тихоокеанском регионе по компонентам (решения, услуги), способу развертывания (облачные, локальные), размеру организации (крупные предприятия, малые и средние предприятия), вертикали (производство, энергетика и коммунальные услуги, транспорт, государственное управление, здравоохранение, аэрокосмическая и оборонная промышленность, другие), заинтересованным сторонам (MRO, OEM/ODM, технологические интеграторы) — отраслевые тенденции и прогноз до 2029 года.

Рынок предиктивного технического обслуживания в Азиатско-Тихоокеанском регионе

Анализ и размер рынка предиктивного обслуживания в Азиатско-Тихоокеанском регионе

Несколько компаний в настоящее время запускают облачные платформы следующего поколения, работающие от начала до конца. Более широкое применение новых и развивающихся технологий для получения ценной информации о принятии решений способствовало росту отрасли. Различные вертикальные конечные пользователи все чаще ищут экономию средств и простои, что подпитывает рост рынка.

Data Bridge Market Research анализирует, что рынок предиктивного обслуживания оценивался в 1,73 млрд долларов США в 2021 году и, как ожидается, достигнет значения 7,59 млрд долларов США к 2029 году при среднегодовом темпе роста 20,3% в течение прогнозируемого периода. В дополнение к рыночным инсайтам, таким как рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, рыночный отчет, курируемый командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ потребления продукции и анализ пестиков.

Масштаб и сегментация рынка предиктивного технического обслуживания в Азиатско-Тихоокеанском регионе

Отчет Метрика

Подробности

Прогнозируемый период

2022-2029

Базовый год

2021

Исторические годы

2020 (Можно настроить на 2014 - 2019)

Количественные единицы

Выручка в млрд долл. США, объемы в единицах, цены в долл. США

Охваченные сегменты

Компоненты (решение, услуги), режим развертывания (облачный, локальный), размер организации (крупные предприятия, малые и средние предприятия), вертикаль (производство, энергетика и коммунальные услуги, транспорт, государственное управление, здравоохранение, аэрокосмическая и оборонная промышленность , другие), заинтересованная сторона (MRO, OEM/ODM, технологические интеграторы)

Страны, охваченные

Япония, Китай, Индия, Южная Корея, Австралия, Сингапур, Малайзия, Таиланд, Индонезия, Филиппины, остальные страны Азиатско-Тихоокеанского региона

Охваченные участники рынка

Microsoft (США), IBM Corporation (США), SAP SE (Германия), SAS AG (Германия), TIBCO Software Inc. (США), Hewlett Packard Enterprise Development LP (США), Altair Engineering Inc. (США), Splunk Inc. (США), Oracle (США), Google LLC (США), Amazon Web Services, Inc. (США), General Electric (США), Schneider Electric (Франция), Hitachi, Ltd. (Япония), PTC (США), RapidMiner, Inc. (США), Operational Excellence (OPEX) Group Ltd, (Великобритания), Dingo (Австралия), Factory5 (Россия)

Возможности

  • Растущая глобализация и продолжающаяся тенденция цифровизации
  • ИИ и МО могут собирать и преобразовывать огромный объем данных, связанных с клиентом, в осмысленную информацию

Определение рынка

A predictive maintenance software system is used to monitor any instrumentation or machine's performance and condition while in operation. The software system monitors the instrumentation using advanced techniques, allowing the machinery to be maintained on a regular basis before any failure occurs. The predictive maintenance software system has found use in a variety of fields, including the detection of three-phase power imbalances caused by harmonic distortion, the identification of distinct motor electrical phenomenon spikes, and the detection of heating caused by dangerous bearings.

Predictive Maintenance Market Dynamics

  • DriversExpansion of small and medium sized industries

One of the major factors driving market growth is the increasing number of small and medium-sized businesses around the world. In other words, an increase in the number of banking, financial services, and insurance (BFSI), government and public sector, healthcare and life sciences, manufacturing, retail and e-commerce, telecommunications, and information technology (IT) industries is directly influencing market growth.

  • Advancements in futuristic technologies

Constant advancements in big data, machine-to-machine (M2M) communication, and artificial intelligence have opened up new avenues for the dissemination of information derived from artificial means. IoT bias generates massive data from various sources, such as detectors, cameras, and other connected bias. However, the data has no value unless converted into actionable, contextual information. Big data and data visualization methods allow pharmacists to gain new perspectives through batch processing and offline analysis. Real-time data analysis and decision-making are frequently performed manually; however, to make it scalable, it is preferable to be performed automatically.

Opportunities

  • Advanced machine language operations

Across nearly every perpendicular, advanced asset operation is becoming less desirable. As a result of connected bias, result providers equipped with AI and ML can collect and transform a vast quantum of client-related data into meaningful perceptivity. AI can also be combined with IoT bias to optimize various aspects of service delivery, such as predictive conservation and quality assessment, without the need for human intervention.

Restraints

  • Lack of skilled workers

Trained workers must manage the most recent software systems to implement AI-based IoT technologies and skill sets. As a result, workers must be trained on how to operate new and upgraded systems. Furthermore, diligence are dynamic in their embrace of new technologies. However, they face a shortage of largely professed pool and complete workers. As the majority of global merchants organize prophetic conservation systems, the demand for a broadly professed pool grows. Companies must develop grit in areas such as cybersecurity, networking, and operations.

В этом отчете о рынке предиктивного обслуживания содержатся сведения о последних новых разработках, правилах торговли, анализе импорта-экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии внутренних и локальных игроков рынка, анализируются возможности с точки зрения новых источников дохода, изменений в правилах рынка, анализ стратегического роста рынка, размер рынка, рост рынка категорий, ниши приложений и доминирование, одобрения продуктов, запуски продуктов, географические расширения, технологические инновации на рынке. Чтобы получить больше информации о рынке предиктивного обслуживания, свяжитесь с Data Bridge Market Research для получения аналитического обзора, наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.

Влияние COVID-19 на рынок предиктивного обслуживания

COVID-19 в корне изменил динамику бизнес-операций. Хотя вспышка COVID-19 пролила свет на недостатки бизнес-моделей в разных вертикалях, она также предоставила предприятиям несколько возможностей для цифровизации и расширения за пределы границ, поскольку отказ от таких технологий, как ИИ, аналитика, IoT и блокчейн, и их интеграция возросли в период изоляции. Во время первых и дополнительных раскопок 2020 года секторы розничной торговли и производства столкнулись со значительным падением эффективности бизнеса. Тем не менее, благодаря наличию вакцин и значительному контролю эпидемии ожидается, что эти секторы увидят рост инвестиций в течение всего прогнозируемого периода, поскольку пророческие результаты сохранения растут в различных бизнес-функциях.

Недавнее развитие

  • В мае 2021 года институт SAS запустил платформу SAS Viya, чтобы помочь заложить основу для успешного использования данных и логики путем включения новых результатов обработки данных в свою критически важную, полностью собственную платформу SASViya.

Масштаб рынка предиктивного технического обслуживания в Азиатско-Тихоокеанском регионе

Рынок предиктивного обслуживания сегментирован на основе компонентов, режима развертывания, размера организации, вертикали и заинтересованных сторон. Рост среди этих сегментов поможет вам проанализировать сегменты с незначительным ростом в отраслях и предоставить пользователям ценный обзор рынка и рыночные идеи, которые помогут им принимать стратегические решения для определения основных рыночных приложений.

Компоненты

  • Решение
  • Услуги

Режим развертывания

  • Облако
  • Локально

Размер организации

  • Крупные предприятия
  • Малые и средние предприятия

Вертикальный

  • Производство
  • Энергетика и коммунальные услуги
  • Транспорт
  • Правительство
  • Здравоохранение
  • Аэрокосмическая промышленность
  • Оборона
  • Другие

Заинтересованная сторона

  • ТОиР
  • OEM/ODM
  • Интеграторы технологий

Региональный анализ/информация о рынке предиктивного обслуживания

Проведен анализ рынка предиктивного обслуживания, а также предоставлены сведения о размерах рынка и тенденциях по странам, компонентам, режиму развертывания, размеру организации, вертикали и заинтересованным сторонам, как указано выше.

В отчете о рынке предиктивного технического обслуживания рассматриваются следующие страны: Япония, Китай, Индия, Южная Корея, Австралия, Сингапур, Малайзия, Таиланд, Индонезия, Филиппины и остальные страны Азиатско-Тихоокеанского региона.

Китай является доминирующим регионом благодаря растущему использованию интеллектуальных датчиков и бортовой электроники, которые могут взаимодействовать через облачные аналитические системы; поставщик продукции может заранее оценить рабочее состояние и требования к обслуживанию оборудования.

Раздел отчета по странам также содержит отдельные факторы, влияющие на рынок, и изменения в регулировании рынка, которые влияют на текущие и будущие тенденции рынка. Такие данные, как анализ цепочки создания стоимости вверх и вниз по течению, технические тенденции и анализ пяти сил Портера, тематические исследования — вот некоторые из указателей, используемых для прогнозирования рыночного сценария для отдельных стран. Кроме того, при предоставлении прогнозного анализа данных по странам учитываются наличие и доступность брендов Азиатско-Тихоокеанского региона и их проблемы, связанные с большой или малой конкуренцией со стороны местных и отечественных брендов, влияние внутренних тарифов и торговых путей.   

Анализ конкурентной среды и доли рынка предиктивного обслуживания

Конкурентная среда рынка предиктивного обслуживания содержит сведения по конкурентам. Включены сведения о компании, финансы компании, полученный доход, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, присутствие в Азиатско-Тихоокеанском регионе, производственные площадки и объекты, производственные мощности, сильные и слабые стороны компании, запуск продукта, широта и широта продукта, доминирование приложений. Приведенные выше данные относятся только к фокусу компаний, связанному с рынком предиктивного обслуживания.

Некоторые из основных игроков, работающих на рынке предиктивного обслуживания:

  • Майкрософт (США)
  • Корпорация IBM (США)
  • SAP SE (Германия)
  • SAS AG (Германия)
  • TIBCO Software Inc. (США)
  • Hewlett Packard Enterprise Development LP (США)
  • Altair Engineering Inc. (США)
  • Splunk Inc. (США)
  • Оракул (США)
  • Google LLC (США)
  • Amazon Web Services, Inc. (США)
  • General Electric (США)
  • Schneider Electric (Франция)
  • Hitachi, Ltd. (Япония)
  • PTC (США)
  • RapidMiner, Inc. (США)
  • Operational Excellence (OPEX) Group Ltd, (Великобритания)
  • Динго (Австралия)
  • Factory5 (Россия)


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

The Asia-Pacific Predictive Maintenance Market is projected to grow at a CAGR of 20.3% during the forecast period by 2029.
The future market value of the Asia-Pacific Predictive Maintenance Market is expected to reach USD 7.59 billion by 2029.
The major players in the Asia-Pacific Predictive Maintenance Market are Microsoft (U.S.), IBM Corporation (U.S.), SAP SE (Germany), SAS AG (Germany), TIBCO Software Inc. (U.S.), Hewlett Packard Enterprise Development LP (U.S.), Altair Engineering Inc. (U.S.), Splunk Inc. (U.S.), Oracle (U.S.), etc.
The countries covered in the Asia-Pacific Predictive Maintenance Market are Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific.