Обзор
Автомобильная промышленность трансформируется благодаря достижениям в области технологий искусственного интеллекта (ИИ) и машинного обучения (МО). Искусственный интеллект и машинное обучение проложили путь к созданию более безопасных и умных автомобилей, предлагая инновационные решения, которые повышают производительность автомобиля, улучшают функции безопасности и коренным образом меняют впечатления от вождения. Искусственный интеллект и машинное обучение находят свое применение в цепочке создания стоимости в автомобильной промышленности. В настоящее время он внедряется в автомобильном производстве, включая проектирование, цепочку поставок, производство и постпроизводство. Искусственный интеллект и машинное обучение внедряются в системы «помощи водителю» и «оценки рисков водителя»; это меняет способ работы транспорта. ИИ также меняет услуги послепродажного обслуживания, такие как профилактическое обслуживание и страхование. Использование машинного обучения в автомобильной промышленности позволило создать новые интеллектуальные продукты и оптимизировать способы работы. В этом тематическом исследовании основное внимание уделяется Data Bridge Market Research (DBMR), ведущей консалтинговой фирме по исследованию рынка, и ее роли в оказании помощи клиенту в использовании искусственного интеллекта и машинного обучения для создания более безопасных и умных автомобилей.
Искусственный интеллект (ИИ) в настоящее время широко используется в традиционном программном обеспечении, таком как Autodesk и многих других. Высокоразмерные функции искусственного интеллекта, которые можно использовать для проведения многочисленных проектных исследований. Использование ИИ начинается на этапе разработки нового автомобиля. Использование дополненной и виртуальной реальности позволяет разрабатывать лучшие дизайнерские идеи и исправлять ошибки до того, как они станут дорогими. Умная система может дать множество дизайнерских идей для будущих деталей и моделей автомобилей, а автомобильные компании смогут выбрать лучшие из них.
История клиента:
Клиентом был известный производитель автомобилей, стремившийся оставаться в авангарде технологических достижений. Признавая потенциал искусственного интеллекта и машинного обучения в преобразовании автомобильной промышленности, клиент стремился интегрировать эти технологии в свои автомобили, чтобы повысить безопасность, оптимизировать производительность и удовлетворить растущие запросы потребителей.
Проблемы, с которыми сталкивается клиент:
Клиент столкнулся с рядом проблем при внедрении технологий искусственного интеллекта и машинного обучения в свои автомобили, в том числе:
- Определение наиболее эффективных вариантов использования интеграции искусственного интеллекта и машинного обучения для повышения безопасности транспортных средств.
- Преодоление проблем с качеством и доступностью данных для обучения моделей искусственного интеллекта и машинного обучения
- Обеспечение соответствия нормативным требованиям и решение проблем безопасности, связанных с функциями, основанными на искусственном интеллекте.
- Преодоление сложностей интеграции технологий искусственного интеллекта и машинного обучения в существующие архитектуры транспортных средств.
- Хотели узнать об общем адресном рынке (TAM) автомобильной промышленности в области искусственного интеллекта и машинного обучения на глобальном уровне и в различных регионах, таких как Азиатско-Тихоокеанский регион, Северная Америка, Европа, Ближний Восток и Африка, а также Южная Америка.
- Хотел узнать о критериях выбора поставщиков и о том, как компания может выбрать любого поставщика. Какой указатель клиент должен учитывать при выборе поставщика
- Оценка влияния искусственного интеллекта и машинного обучения на существующие бизнес-модели и предпочтения клиентов.
- Определение возможностей использования алгоритмов искусственного интеллекта и машинного обучения для обеспечения возможностей автономного вождения. Будущие темпы роста требуемого рынка
Клиент обратился в Data Bridge Market Research, чтобы решить эти проблемы и понять текущий сценарий использования искусственного интеллекта и машинного обучения на автомобильном рынке. Data Bridge Market Research — надежная консалтинговая фирма по исследованию рынка, известная своим опытом в области новых технологий. Кроме того, клиент хотел узнать о текущих тенденциях и технологиях, а также подробно изучить основных игроков, внедряющих их на автомобильном рынке, чтобы они могли соответствующим образом расширить свой бизнес. DBMR должна была провести всесторонний анализ рыночной ситуации, выявить соответствующие тенденции и предоставить полезную информацию для руководства стратегией внедрения искусственного интеллекта и машинного обучения клиента.
Подход к исследованию рынка DBMR для решения проблем клиентов
DBMR применил следующий подход, чтобы помочь клиенту:
- Анализ рынка: DBMR провел обширный анализ автомобильной промышленности, изучив рыночные тенденции, анализ конкурентов и предпочтения клиентов. Этот анализ предоставил ценную информацию о потенциальном применении искусственного интеллекта и машинного обучения для создания более безопасных и умных автомобилей.
- Определение вариантов использования. Тесно сотрудничая с заинтересованными сторонами клиента, DBMR определила конкретные варианты использования, в которых искусственный интеллект и машинное обучение могут значительно повысить безопасность транспортных средств. Эти варианты использования варьировались от передовых систем помощи водителю (ADAS) до систем прогнозного обслуживания и интеллектуальных навигационных систем.
- Анализ данных и разработка моделей: DBMR помогла клиенту преодолеть проблемы с качеством и доступностью данных, проанализировав существующие источники данных и порекомендовав стратегии по сбору и обработке высококачественных данных для обучения моделей искусственного интеллекта и машинного обучения. DBMR также помогла в разработке индивидуальных моделей искусственного интеллекта и машинного обучения, адаптированных к конкретным сценариям использования клиента.
- Безопасность и соответствие нормативным требованиям: DBMR тщательно проанализировала правила и стандарты безопасности, применимые к автомобильным функциям, управляемым искусственным интеллектом. Эта оценка позволила убедиться, что реализации ИИ и машинного обучения клиента соответствуют необходимым требованиям безопасности, устраняя потенциальные риски и обеспечивая доверие потребителей.
- Конкурентный анализ: Чтобы оставаться конкурентоспособным в жесткой автомобильной промышленности, клиенту потребовался тщательный анализ доли рынка и анализ стратегического развития. Клиент хотел, чтобы DBMR оценила свое текущее положение на рынке, определила свои сильные и слабые стороны, а также оценила стратегии, используемые конкурентами. Этот анализ поможет клиенту разработать эффективные бизнес-стратегии, чтобы выделиться, определить возможности роста и получить конкурентное преимущество.
- Критерии выбора поставщика: Клиенту требовалось руководство по выбору надежных поставщиков для закупки высококачественных добавок для оптимизации их затрат. Они хотели, чтобы DBMR помог определить критерии выбора поставщика на основе качества, надежности, цен и возможностей доставки. Клиент ожидал, что DBMR поможет ему создать цепочку создания стоимости, определив надежных поставщиков, которые смогут последовательно выполнять его требования в соответствии с желаниями клиента.
Рекомендации и реализация
На основании результатов исследования рынка компания Data Bridge Market Research предоставила клиенту ряд рекомендаций, в том числе:
- Дорожная карта интеграции: DBMR разработала комплексную дорожную карту внедрения, в которой описаны шаги, необходимые для интеграции технологий искусственного интеллекта и машинного обучения в процессы производства автомобилей клиента. В дорожной карте были рассмотрены такие факторы, как сбор данных, разработка моделей, интеграция оборудования и проверка программного обеспечения.
- Партнерство и привлечение талантов: DBMR помогла клиенту определить стратегическое партнерство с поставщиками технологий искусственного интеллекта и машинного обучения и рекомендовала потенциальное сотрудничество с исследовательскими институтами или стартапами. Кроме того, DBMR консультировал клиента по стратегиям привлечения талантов, чтобы обеспечить доступ к опыту, необходимому для успешной интеграции искусственного интеллекта и машинного обучения.
- Тестирование и проверка: DBMR оказала клиенту поддержку в разработке строгих протоколов тестирования и процедур проверки функций искусственного интеллекта и машинного обучения. Это обеспечило функциональность, надежность и безопасность систем на базе искусственного интеллекта еще до их внедрения в серийные автомобили.
Результаты и влияние на бизнес
Внедрение рекомендаций DBMR принесло для клиента существенные результаты:
- Расширенные функции безопасности. Благодаря интеграции технологий искусственного интеллекта и машинного обучения клиент улучшил функции безопасности своих транспортных средств, включая усовершенствованные системы помощи водителю (ADAS), которые могут обнаруживать потенциальные опасности и реагировать на них в режиме реального времени. Это привело к снижению количества аварий, повышению безопасности дорожного движения и повышению уверенности водителей.
- Оптимизированная производительность. Транспортные средства клиента улучшили производительность и топливную экономичность благодаря алгоритмам оптимизации на основе искусственного интеллекта и машинного обучения. Эти алгоритмы оптимизировали системы автомобиля на основе данных в реальном времени и условий движения, таких как характеристики двигателя, трансмиссии и аэродинамики.
- Персонализированный пользовательский опыт. Технологии искусственного интеллекта и машинного обучения позволили клиенту обеспечить персонализированный пользовательский опыт путем анализа поведения, предпочтений и исторических данных водителя. Результатом этого стали индивидуальные функции, интеллектуальные информационно-развлекательные системы и плавная интеграция с мобильными устройствами.
- Конкурентное преимущество: эффективно используя технологии искусственного интеллекта и машинного обучения, клиент получил конкурентное преимущество в автомобильной промышленности. Они позиционировали себя как лидеры в создании более безопасных и умных автомобилей, привлечении технически подкованных клиентов и дифференцировании своего бренда среди конкурентов.
Заключение:
Исследование рынка Data Bridge сыграло важную роль в стимулировании роста бизнеса клиента за счет стратегического внедрения технологий искусственного интеллекта и машинного обучения. Производители автомобилей теперь стремятся использовать искусственный интеллект и машинное обучение для снижения затрат, оптимизации продуктов, повышения эффективности, ускорения циклов разработки и создания более устойчивой экосистемы. DBMR помогает клиенту, проводя комплексные исследования рынка, предоставляя ценную информацию и помогая во внедрении. DBMR позволил клиенту эффективно использовать возможности виртуального помощника и автономного вождения. Этот практический пример демонстрирует положительные результаты использования специализированных исследований рынка и консалтинговых услуг. В результате клиент добился улучшения пользовательского опыта, расширенных возможностей автономного вождения и расширенных возможностей для бизнеса, укрепив свою позицию лидера рынка в более безопасном, динамичном виртуальном помощнике и беспилотном автомобильном бизнесе.