Обзор
Используя алгоритмы, а не людей для создания моделей обучения, автоматизированное машинное обучение (AML) помогает уменьшить количество повторяющихся и утомительных процессов, включая выбор параметров и очистку данных. Процесс формулирования и проверки гипотез продолжится благодаря машинному обучению, компоненту науки о данных. Цель autoML — автоматизировать эти процессы для поиска оптимального алгоритма в диапазоне доступных функций, алгоритмов и гиперпараметров. Ожидается, что autoML упростит интеллектуальную автоматизацию повторяющихся процессов в рабочем процессе ML. Это позволяет ценным ресурсам перейти от монотонной работы к анализу и оценке наиболее эффективных моделей, предлагающих ценность. В результате время создания моделей и решений на их основе будет существенно сокращено.
Хотя системы AutoML способны создавать прогнозные модели достаточно быстро, чтобы достичь почти оптимальной производительности, их возможности по-прежнему ограничены, и их полные обещания остаются нереализованными. Несмотря на то, что AutoML становится все более распространенным в области проектирования и подготовки данных, все еще существуют некоторые сильно зависящие от предметной области приложения, где это скорее искусство, чем инженерия. AutoML будет играть значительную роль в ускорении внедрения решений на основе машинного обучения, поскольку это активная тема исследований, которая добивается большого прогресса (при этом несколько игроков решают существующие проблемы в автоматизации полного процесса разработки моделей).
Проблемы клиента
Клиент хотел проанализировать возможности и проблемы, связанные с автоматизированным машинным обучением (AML). Основная цель клиента — привести свои предложения решений в соответствие с будущими потребностями клиентов в улучшении принятия решений, низких затратах, повышении эффективности, инновациях и получении конкурентного преимущества, оставаясь в авангарде технологических достижений.
Ниже приведены требования, предъявляемые клиентом:
- Общий размер адресуемого рынка (TAM) и темпы роста в годовом исчислении как на региональном, так и на страновом уровне.
- Текущие и будущие технологические тенденции, а также проблемы, с которыми сталкиваются при внедрении
- Сравнительный анализ компаний как ведущих, так и будущих игроков, включая долю рынка, отслеживаемый доход, стратегические инициативы, внедрение технологий, критерии выбора поставщиков и другие.
- Инвестиционная стратегия и финансирование различными игроками
- Рыночные возможности и оценка привлекательности
- Новые приложения автоматизированного машинного обучения (AML)
- Нормативные требования и соответствие на уровне страны
Подход DBMR/методология исследования
DBMR провел всесторонний анализ рыночной ситуации, выявив соответствующие тенденции и предоставив полезную информацию для клиента. Мы использовали модель штатива для анализа и проверки данных, чтобы предоставить ценную информацию на основе требований клиента. Ниже объясняется подход или методология исследования DBMR для анализа и оценки автоматизированного машинного обучения (AML):
Наш подход предполагает использование как первичных, так и вторичных исследовательских методологий для оценки, анализа и проверки данных.
DBMR провела вторичное и первичное исследование как нисходящих, так и восходящих методов анализа и проверки данных. Этот подход использовался для доступа как к качественным, так и к количественным данным для каждого упомянутого сегмента глобальных, региональных и страновых данных.
- Вторичные исследования, включающие данные, опубликованные различными правительственными ассоциациями, сертифицированные публикации, презентации для инвесторов, годовые отчеты SEC, веб-сайт компании, журналы, официальные документы и статьи признанных авторов и других лиц.
- Первичное исследование включает в себя углубленные интервью с различными основными респондентами посредством холодных звонков, LinkedIn, электронной почты и других, с ключевыми участниками отрасли, профильными экспертами (МСП), руководителями высшего звена ключевых игроков рынка и отраслевыми консультантами для проверять как качественную, так и количественную информацию. В основном это выполняется нашей специальной основной командой и отдельными лицами (третьими лицами), присутствующими на местном объекте. Более того, мы даже готовим исчерпывающую анкету и руководство по обсуждению, которое включает как структурированные, так и неструктурированные данные, чтобы использовать подход, основанный на обсуждениях.
Приведенная выше методология использовалась для анализа требований клиента:
- Размер рынка был рассчитан с учетом подходов «сверху вниз» и «снизу вверх».
- Конкурентный анализ: анализ компании, основанный на отслеживаемых доходах, предложениях решений, сильных и слабых сторонах, доле рынка, географическом охвате, стратегических инициативах, а также инвестициях и финансировании, среди прочего, для выявления ключевых поставщиков, потенциальных поставщиков, революционеров рынка и нишевых игроков для достижения конкурентоспособности. преимущество
- Также были изучены такие факторы, как движущие силы, ограничения, возможности и проблемы, влияющие на рынок в целом.
- Влияние как внутренних, так и внешних факторов, а именно проблем совместимости и сложности, наличия технологий-заменителей, нормативно-правовой среды и сотрудничества, COVID-19 и российско-украинской войны как со стороны спроса, так и со стороны предложения.
- Также была проведена тщательная оценка нормативно-правовой базы и углубленное исследование для анализа потенциальных клиентов на этом рынке. Более того, тесное сотрудничество с заинтересованными сторонами клиента помогает нам определить конкретные приложения или варианты использования, где этот рынок может принести значительную пользу.
Таким образом, следуя вышеупомянутому подходу, клиенту была предоставлена соответствующая информация о рынке.
Бизнес решения
Ниже приведены решения, предоставленные при анализе рынка решений для автоматизированного машинного обучения (AML):
- Размер рынка и среднегодовой темп роста решения автоматизированного машинного обучения (AML) на глобальном, региональном и страновом уровне были представлены для понимания рыночного потенциала для каждого сегмента.
- На уровне страны был предоставлен подробный анализ автоматизированного машинного обучения (AML), а также тенденций его внедрения, таких как нормализация данных, очистка данных и преобразование данных. AML поможет минимизировать затраты, ускорить получение результатов (анализ данных) и принятие решений, оптимизировать операции с улучшенной предварительной подготовкой и получить больше конкурентных преимуществ.
- Сравнительный анализ компаний был представлен с точки зрения профилирования компаний, позиционирования и сетки приложений, ландшафта компании, SWOT, стратегических инициатив и других, чтобы определить рыночную конкуренцию и получить конкурентное преимущество.
- Также была предоставлена информация о технологических достижениях, включая облачные вычисления, искусственный интеллект, робототехнику и другие, а также о других рыночных возможностях и проблемах, влияющих на рынок в целом. Было замечено, что облачная модель проще в доступе, более масштабируема и гибка, чем локальная модель. Более того, это экономически эффективная модель, поскольку она обеспечивает модель оплаты по мере использования, поэтому она будет очень полезна для каждой организации, особенно для малых и средних предприятий.
- В регионе Северная Америка занимает максимальную долю рынка благодаря присутствию ведущих компаний, которые удовлетворяют спрос на внедрение машинного обучения в нескольких отраслях конечных пользователей, включая BFSI, здравоохранение и розничную торговлю, среди других.
Влияние на бизнес
Клиент имел четкое представление о конкурентоспособности рынка, предстоящем внедрении технологий и стратегических шагах/планах, которые помогут ему обслуживать известных конечных пользователей в разных странах. Компания улучшила показатели конверсии благодаря своему последнему автоматизированному предложению, которое обеспечивает наиболее эффективное решение на разных этапах пути покупателя.
Заключение
Исследование рынка Data Bridge предоставило углубленную информацию о рынке автоматизированного машинного обучения (AML) для удовлетворения каждого требования. Кроме того, фактическая и консолидированная информация отчета поможет клиенту оценить рост компании с точки зрения проникновения технологий, а также может быть в дальнейшем использована для принятия решений и будущего планирования. Помимо этого, клиент может даже получить доступ к бизнес-возможностям из информации отчетов.