Articles

Dec, 19 2022

Трансформация процесса разработки лекарств с помощью искусственного интеллекта

В последнее время использование искусственного интеллекта (ИИ) растет быстрыми темпами. Почти в каждой области использование ИИ растет. С его адаптацией многие вещи становятся более гладкими. По мере того, как шумиха вокруг ИИ набирает обороты, крупные игроки рынка и торговцы изо всех сил пытаются продвигать то, как их продукты и услуги используют ИИ. Искусственный интеллект — это воссоздание процессов человеческого интеллекта машинами, в основном с помощью компьютерных систем. Обычно то, что они называют ИИ, — это просто один из компонентов ИИ, например, машинное обучение. ИИ требует комбинации аппаратного и программного обеспечения для написания и обучения алгоритмов машинного обучения. Несколько языков программирования, похожих на ИИ, такие как Python, R и Java, пользуются популярностью.  

Наша команда DBMR исследовала рынок программного обеспечения для операционализации машинного обучения и стала свидетелем того, что Северная Америка доминирует на рынке программного обеспечения для операционализации машинного обучения в прогнозируемый период 2022-2029 гг. и продолжит процветать в течение прогнозируемого периода благодаря присутствию основных ключевых игроков и увеличению числа технических инноваций в этом регионе. Ожидается, что рынок продемонстрирует среднегодовой темп роста (CAGR) в размере 44,7% в прогнозируемый период 2022-2029 гг.

Чтобы узнать больше об исследовании, посетите: https://www.databridgemarketresearch.com/reports/global-machine-learning-operationalization-software-market

История ИИ

Хотя ИИ стал более распространенным в последнее время из-за возросших объемов данных, усовершенствованных алгоритмов и усовершенствований вычислительной мощности и хранения, этот термин был введен в 1956 году. В то время они исследовали такие предметы, как решение проблем и символические методы. В 1960-х годах Министерство обороны США проявило подлинный интерес к этой области и начало обучать компьютеры имитировать базовые человеческие рассуждения. Например, Агентство перспективных исследовательских проектов Министерства обороны (DARPA) завершило проекты по картографированию улиц в 1970-х годах. Эта ранняя работа проложила путь для автоматизации и формального рассуждения, которые видны в компьютерах сегодня, включая системы поддержки принятия решений и интеллектуальные поисковые системы, разработанные для дополнения и улучшения человеческих способностей.

Как ИИ меняет наш мир

ИИ благословляет нашу жизнь значительными преимуществами, такими как рекомендации по поиску в Интернете, чат-боты, голосовые помощники и многое другое. С каждым днем ​​он становится неотъемлемой частью нашей жизни. ИИ будет иметь огромные преимущества в будущем, поскольку он приведет к более высоким показателям производства и более высокой производительности в различных секторах. В настоящее время и также в ближайшем будущем автоматизация, работающая на основе искусственного интеллекта, отнимает много времени. Часы ручной работы могут быть автоматизированы. Он применим везде. Его можно использовать везде, прогнозируя дорожные условия или погодные условия. Использование автоматизации в ИИ является одним из главных благ среди других.

Преимущества искусственного интеллекта

Краткий обзор фармацевтического рынка ИИ

  • Сокращение человеческого фактора

Искусственный интеллект полезен для сокращения так называемой «человеческой ошибки». Люди обязаны совершать ошибки, но это не относится к компьютерным системам. Компьютеры не совершают этих ошибок, если они правильно запрограммированы. ИИ выполняется с пользой, применяя ранее собранную информацию через определенный набор алгоритмов. Следовательно, ошибки в этом отношении сводятся к минимуму, и вероятность более высокой степени точности становится выше.

  • Рискует вместо людей

С помощью робота с искусственным интеллектом, который в свою очередь может выполнять сложные задачи за нас, можно преодолеть ряд рискованных ограничений, присущих человеку, и это одно из самых существенных преимуществ искусственного интеллекта.

Например, если вернуться назад и вспомнить взрыв на Чернобыльской АЭС в Украине, то в то время не было роботов с искусственным интеллектом, которые могли бы помочь нам минимизировать воздействие радиации в той ситуации; роботы с искусственным интеллектом могли бы стать спасителями для огромной толпы, минимизировав пожар. Роботы с искусственным интеллектом могут использоваться в таких случаях, когда вмешательство может быть опасным.

  • Полная доступность

Если не считать перерывов, среднестатистический человек будет работать около 4–6 часов в день. Работать целый день становится для людей трудной и невозможной. Поддерживать баланс между работой и личной жизнью, справляться с личными обязанностями и утомительным рабочим давлением — это тяжело. Иногда какая-то работа необходима и должна быть выполнена в определенный срок, но иногда это невозможно. Используя ИИ, мы можем заставить машины работать 24x7 без перерывов, и им даже не будет скучно, в отличие от людей.

  • Помогает исследованию

ИИ позволяет исследователям превзойти большой объем данных из различных источников. С данными в реальном времени исследования могут извлечь пользу из широкого спектра доступной информации, если ее легко перевести. Медицинские научно-исследовательские институты, такие как Childhood Cancer Data Lab, разрабатывают полезное программное обеспечение для медицинских работников, чтобы лучше управлять широкими сборами данных. ИИ также широко используется для оценки и обнаружения симптомов с целью предотвращения прогрессирования заболевания. Решения телемедицины применяются для отслеживания прогресса пациентов, восстановления жизненно важных диагностических данных и помощи в предоставлении информации о населении в общие сети.

  • Уменьшение стресса у врачей

Согласно некоторым последним отчетам исследований, более половины врачей общей практики испытывают стресс из-за давления сроков и других факторов на рабочем месте. ИИ помогает оптимизировать процедуры, автоматизировать функции, мгновенно обмениваться данными и организовывать операции, что обычно помогает врачам избегать жонглирования. Однако ИИ может помочь в более трудоемких операциях, например, объясняя диагнозы, медицинские специалисты могут испытывать некоторое облегчение стресса».

  • Более безопасные операции

Хирурги получают более высокий уровень навыков для работы в небольших пространствах, которые в противном случае могли бы потребовать открытой операции. ИИ помогает в этом отношении, находя свое подходящее место в робототехнике здравоохранения, способствуя его соответствующей потребности в хирургии. Роботы могут быть более точными вокруг чувствительных органов и тканей, снижать риск инфекции, послеоперационной боли и уменьшать потерю крови. Роботизированная хирургия имеет больше преимуществ, таких как меньшее количество рубцов и более короткое время восстановления из-за требуемых меньших разрезов. Например, Медицинский центр Маастрихтского университета в Нидерландах использовал робота с поддержкой ИИ в 2017 году для сшивания небольших кровеносных сосудов, некоторые из которых были больше 0,03 миллиметра. Роботом управляет и управляет хирург, движения рук которого преобразуются в точные действия, выполняемые руками робота.

Наша команда DBMT исследовала рынок роботизированной хирургии в гинекологии и стала свидетелем того, как Северная Америка доминирует на рынке роботизированной хирургии в гинекологии из-за растущего спроса на минимально инвазивную хирургию среди населения региона. Ожидается, что в Азиатско-Тихоокеанском регионе в прогнозируемый период будет наблюдаться значительный рост из-за растущей осведомленности о здоровье женщин и расходах на здравоохранение в регионе. Некоторые из основных игроков, работающих на рынке роботизированной хирургии в гинекологии, включают BOWA-electronic GmbH & Co. KG, Prima Medical, XCELLANCE Medical Technologies, ATMOS MedizinTechnik GmbH & Co. KG, Ethicon US, LLC., Johnson & Johnson Services, Inc., Parkell, Inc.

Чтобы узнать больше об исследовании, посетите: https://www.databridgemarketresearch.com/reports/global-gynecology-robotic-surgery-market

  • Усиление профилактической помощи

ИИ и машинное обучение помогают в профилактике и лечении инфекционных заболеваний. Платформа сбора информации о вспышках заболеваний Blue Dot помогает анализировать билеты на самолет и маршруты полетов для точного прогнозирования пути распространения COVID-19 из Уханя в Бангкок, Сеул и Тайбэй. Аналогичным образом, системы на основе ИИ могут помочь врачам обнаружить распространение заболевания, когда пациенты попадают в отделение неотложной помощи, с быстрой диагностикой для обеспечения эффективных процедур изоляции и карантина.

  • Сокращение общих затрат

ИИ помогает значительно сократить время, затрачиваемое на выполнение определенных процессов, и стоимость этих процессов. Например, ИИ может анализировать миллионы изображений для обнаружения признаков заболевания. Он устраняет дорогостоящую ручную работу. Пациенты лечатся быстрее и эффективнее, что дает ряд преимуществ, таких как сокращение числа госпитализаций, времени ожидания и потребности в койках.

Недавнее исследование предсказало существенную экономию средств во многих областях за счет автоматизации на основе ИИ, а именно:

  • Сокращение ошибок дозировки – 16 миллиардов долларов
  • Роботизированная хирургия – 40 миллиардов долларов
  • Помощь в организации административного документооборота – 18 млрд долларов США
  • Виртуальные помощники медсестер – 20 миллиардов долларов
  • Выявление мошенничества – 17 миллиардов долларов

Наша команда DBMR исследовала рынок минимально инвазивной медицинской робототехники, систем визуализации и визуализации, а также хирургических инструментов и пришла к выводу, что к 2028 году объем рынка составит 91,22 млрд долларов США, а среднегодовой темп роста составит 8,6% в указанный выше прогнозируемый период. Регион Северной Америки лидирует на рынке минимально инвазивной медицинской робототехники, систем визуализации и визуализации и хирургических инструментов из-за высокого уровня несчастных случаев и большого количества гериатрического населения в регионе. Ожидается, что Азиатско-Тихоокеанский регион будет расширяться значительными темпами в течение прогнозируемого периода с 2021 по 2028 год из-за дорожно-транспортных происшествий, увеличения гериатрического населения в Японии и Китае, а также ожидается, что развивающаяся экономика будет способствовать появлению процедур MIS в этом конкретном регионе.

Чтобы узнать больше об исследовании, посетите сайт:  https://www.databridgemarketresearch.com/reports/global-minimally-patients-medical-robotics-imaging-visualization-systems-surgical-instruments-market

ИИ в сфере здравоохранения

Огромное участие ИИ в разработке фармацевтического продукта дает ему рациональный дизайн лекарств; помощь в принятии решений; понимание правильной терапии для пациента, включая персонализированные лекарства; и управление клиническими данными, которые генерируются и используются для будущей разработки лекарств. Например, E-VAI — это аналитическая и принимающая решения платформа ИИ, разработанная Eularis, которая использует алгоритмы машинного обучения для создания аналитических дорожных карт на основе конкурентов, ключевых заинтересованных сторон и текущей доли рынка для прогнозирования основных движущих сил в продажах фармацевтических препаратов, что помогает руководителям по маркетингу распределять ресурсы для максимального увеличения доли рынка, а также позволяет им ожидать, куда вкладывать инвестиции.

ИИ играет важную роль в разработке лекарств. ИИ может распознавать хитовые и лидирующие соединения, обеспечивать более быструю проверку целевого препарата в течение короткого времени и оптимизировать дизайн структуры препарата. Он имеет широкое применение в различных аспектах разработки лекарств. Это объясняется ниже:

Краткий обзор фармацевтического рынка ИИ

Несмотря на преимущества, с которыми сталкивается ИИ, у него есть некоторые существенные проблемы с данными, такие как масштаб данных, рост, разнообразие и неопределенность. Наборы данных, доступные для разработки лекарств в различных фармацевтических компаниях, могут включать миллионы соединений и обычные инструменты МО, которые не могут справиться с такими проблемами.

Например, вычислительная модель на основе количественной зависимости структуры от активности (QSAR) может предсказывать большое количество соединений или простых физико-химических параметров, таких как log P или log D, за короткое время. Кроме того, модели на основе QSAR также сталкиваются с серьезными проблемами, такими как ошибка экспериментальных данных в обучающих наборах, небольшие обучающие наборы и отсутствие экспериментальных подтверждений.

Было введено множество методов in silico и виртуальных экранных соединений из виртуальных химических пространств, которые в сочетании со структурой и подходами на основе лигандов дают лучший анализ профиля, более быстрое устранение не свинцовых соединений и выбор молекул лекарств с меньшими затратами. Алгоритмы дизайна лекарств, такие как кулоновские матрицы и распознавание молекулярных отпечатков пальцев, учитывают физические, химические и токсикологические профили, чтобы помочь в выборе ведущего соединения.

Наша команда DBMR исследовала рынок in-silico обнаружения лекарств и стала свидетелем того, что регион Северной Америки лидирует на рынке in-silico обнаружения лекарств благодаря быстрому технологическому прогрессу, сильному присутствию сильных поставщиков и наличию большого количества пациентов, страдающих от различных хронических и инфекционных заболеваний. Ожидается, что Азиатско-Тихоокеанский регион будет расширяться значительными темпами из-за увеличения числа ученых и обширных исследований в области рака и диабета. Кроме того, ожидается, что рост высоких темпов роста в области идентификации биомаркеров и фокус на снижении показателей повторной госпитализации и медицинских ошибок также будут способствовать росту мирового рынка.

Чтобы узнать больше об исследовании, посетите сайт:  https://www.databridgemarketresearch.com/reports/global-in-silico-drug-discovery-market

Список инструментов ИИ, используемых при разработке лекарств

Различные инструменты ИИ широко используются при разработке лекарств. Несколько веб-инструментов, таких как LimTox, admetSAR, Toxtree и pkCSM, доступны для снижения стоимости множества различных анализов. Продвинутые подходы на основе ИИ в основном ищут сходства соединений или прогнозируют токсичность соединения на основе входных характеристик. Другим примером такого инструмента является eToxPred, который помогает оценить токсичность соединений и возможность синтеза многих небольших органических молекул с точностью до 72%. Также присутствует множество других инструментов, которые помогают прогнозировать токсичность соединения. Зачастую некоторые из одобренных FDA препаратов имеют серьезные побочные эффекты, которые необходимо предсказать как можно раньше; эти инструменты ИИ используются в этой связи. Инструменты ИИ представляют собой широкий спектр наборов, но здесь мы упомянем некоторые из инструментов:

Краткий обзор фармацевтического рынка ИИ

Краткий обзор фармацевтического рынка ИИ

Многие фармацевтические компании переходят на ИИ, чтобы сократить финансовые затраты и вероятность неудач, связанных с экспериментами. Рынок ИИ вырос с 200 миллионов долларов США в 2015 году до 700 миллионов долларов США в 2018 году, и, по прогнозам, к 2024 году он достигнет 5 миллиардов долларов. Ожидается, что ИИ произведет революцию в фармацевтическом и медицинском секторах и, по прогнозам, с 2017 по 2024 год его рост составит 40%. Многие фармацевтические компании сделали крупные инвестиции и продолжают инвестировать в искусственный интеллект и объединились с несколькими компаниями, занимающимися ИИ, для разработки основных инструментов здравоохранения. Например, было сотрудничество DeepMind Technologies, дочерней компании Google, с Royal Free London NHS Foundation Trust, которое использовалось для оказания помощи при остром повреждении почек. Другим примером является Boehringer Ingelheim и HealX, которые сотрудничали для поиска методов лечения редких неврологических заболеваний. Eli Lilly and Company и Atomwise сотрудничали для разработки лекарств на новых белковых мишенях. Еще один в списке — сотрудничество Mateon Therapeutics и PointR Data, которое помогло лечить меланому поздней стадии, рак поджелудочной железы и глиому. F. Hoffmann-La Roche и Owkin провели множество клинических испытаний на основе алгоритмов машинного обучения.

Расширенные приложения на основе искусственного интеллекта

  • Нанороботы на основе искусственного интеллекта для доставки лекарств

Нанороботы в основном состоят из интегральных схем, датчиков, источника питания и надежного резервного копирования данных, которые поддерживаются с помощью вычислительных технологий, таких как ИИ. Они запрограммированы на избежание столкновений, идентификацию цели, обнаружение и присоединение и, наконец, выведение из организма. Последние достижения в области нано/микророботов позволяют им перемещаться к целевому месту на основе физиологических условий, таких как pH, что повышает эффективность и снижает системные побочные эффекты.

Необходимо учитывать множество параметров, таких как корректировка дозы, замедленное высвобождение, контролируемое высвобождение и высвобождение лекарств, которые необходимо контролировать для надлежащей доставки лекарств. Микрочиповые имплантаты используются для запрограммированного высвобождения имплантата, а также для определения надлежащего местоположения имплантата в организме

Наша команда DBMR исследовала рынок нанороботов и стала свидетелем того, что Северная Америка доминирует на рынке нанороботов из-за роста внедрения технологии наноробототехники. Кроме того, наличие сложной инфраструктуры здравоохранения еще больше подстегнет рост рынка нанороботов в регионе в течение прогнозируемого периода. Растущие области применения микроскопов и включение микроскопии со спектроскопией, как дополнительно оценивается, откроют потенциальные возможности для роста рынка нанороботов в ближайшие годы.

Чтобы узнать больше об исследовании, посетите сайт:  https://www.databridgemarketresearch.com/reports/global-nanorobots-market

  • Появление ИИ в наномедицине

Использование нанотехнологий определенно растет. Ученые все больше полагаются на эту методологию и используют ее в области медицины. Наномедицина используется для диагностики и лечения многих сложных заболеваний, а именно ВИЧ, рака, малярии, астмы и различных воспалительных заболеваний. В последние годы доставка лекарств с помощью наночастиц стала необходимой в области терапии и диагностики из-за ее повышенной эффективности и лечения. Если нанотехнологию смешать с ИИ, она может решить многие проблемы при разработке рецептур. Например, ИИ помог приготовить силикасомы. Силикасомы представляют собой комбинацию iRGD, пептида, проникающего в опухоль, и многофункциональных мезопористых наночастиц кремния, загруженных иринотеканом. Наномедицина увеличила поглощение силикасом в три-четыре раза, поскольку iRGD помогает улучшить трансцитоз силикасом.

  • ИИ в комбинированной доставке лекарств и прогнозировании синергизма/антагонизма

Несколько новых комбинаций препаратов были одобрены и поступили в продажу для лечения сложных заболеваний, таких как туберкулез и рак, поскольку они могут обеспечить синергический эффект для быстрого выздоровления пациентов . Потенциальные препараты, выбранные для этой комбинации, требуют высокопроизводительного скрининга значительного количества препаратов, что делает процесс утомительным. Например, терапия рака включает комбинацию из шести или семи препаратов. Рашид и др. разработали модель платформы квадратичной оптимизации фенотипа, которая используется для определения оптимальной комбинированной терапии для лечения множественной миеломы, устойчивой к бортезомибу, с помощью набора из 114 одобренных FDA препаратов. Лучшими двумя препаратами, участвующими в этой модели, являются децитабин (Dec) и митомицин C (MitoC).

Помимо передовых приложений ИИ, он также имеет значение в позиционировании на рынке. С легкостью технологий и электронной коммерции всем компаниям стало проще рекламировать свой бренд на публичной платформе. Одним из наиболее используемых инструментов является SEO, который большинство компаний используют для того, чтобы занять фиксированную позицию в онлайн-маркетинге и помочь позиционировать продукт на рынке. Компании постоянно пытаются управлять своей позицией на более высокой позиции в игре, обеспечивая узнаваемость своего бренда в короткие сроки.

Наша команда DBMR исследовала рынок упаковки для электронной коммерции и стала свидетелем того, что Азиатско-Тихоокеанский регион доминирует на рынке упаковки для электронной коммерции с точки зрения доли рынка и доходов и продолжит процветать в течение прогнозируемого периода. Это связано с растущим предпочтением потребителей гофроящиков в таких развивающихся странах, как Индия, Китай и Япония. Китай лидирует на рынке Азиатско-Тихоокеанского региона. Covid-19 подстегнул рост рынка. Covid-19 ограничил перемещение людей и материалов. Электронная коммерция сыграла важную роль в пандемии, поскольку увеличился спрос на товары первой необходимости, такие как продукты питания, лекарства, овощи и другие продукты.

Чтобы узнать больше об исследовании, посетите сайт:  https://www.databridgemarketresearch.com/reports/global-e-commerce-packaging-market

Заключение:

С развитием искусственного интеллекта и его замечательных инструментов фармацевтические компании получают преимущества во многих аспектах. Это влияет на процесс разработки лекарств, а также на общий жизненный цикл продукта, что в свою очередь легко объясняет рост числа стартапов. Сектор здравоохранения сталкивается со многими проблемами, такими как рост стоимости лекарств и методов лечения. Обществу нужны существенные изменения в этой области, которым необходимо придать значение. По мере того, как наступает эпоха цифрового здравоохранения и увеличивается распространенность ИИ, на свет также выходят персонализированные лекарства с желаемой дозой, параметрами высвобождения и другими необходимыми аспектами, которые можно производить в соответствии с индивидуальными потребностями пациента. Технологии на основе ИИ не только помогут ускорить время, необходимое для выхода продуктов на рынок, но, в дополнение к этому, они также помогут улучшить продукты и общую безопасность производственного процесса.

Кроме того, это также обеспечит лучшее использование экономически эффективных и доступных ресурсов, тем самым повышая важность автоматизации. Помимо этого аспекта, наиболее существенным беспокойством, связанным с внедрением этих технологий, является потеря рабочих мест, которая последует, и строгие правила, необходимые для работы ИИ. Однако эти системы способствуют поощрению простоты у людей и не заменяют их полностью. Многие торговцы включают компоненты ИИ в свои стандартные предложения или предоставляют доступ к платформам ИИ как услуги (AIaaS). Их расходы на оборудование, программное обеспечение и персонал для ИИ могут быть дорогими. Значимость ИИ как услуги заключается в том, что он позволяет отдельным лицам и компаниям экспериментировать с ИИ для различных бизнес-целей. Различные подобласти ИИ, а именно машинное обучение, нейронные сети и глубокое обучение, также одинаково полезны в разработке лекарств. Помимо этого, несколько других технологий поддерживают и позволяют использовать ИИ, а именно компьютерное зрение, интернет вещей, передовые алгоритмы и графические процессоры.


Client Testimonials