Статьи

19 декабря 2022 г.

Трансформация открытия лекарств с помощью искусственного интеллекта

В последнее время использование искусственного интеллекта (ИИ) растет быстрыми темпами. Почти во всех сферах использование ИИ растет. С его адаптацией многие вещи становятся более плавными. Поскольку ажиотаж вокруг ИИ усилился, крупные игроки рынка и торговцы изо всех сил стараются пропагандировать, как их продукты и услуги используют ИИ. Искусственный интеллект — это воссоздание процессов человеческого интеллекта с помощью машин, главным образом с помощью компьютерных систем. Обычно то, что они называют ИИ, — это просто один из компонентов ИИ, например машинное обучение. ИИ требует сочетания аппаратного и программного обеспечения для написания и обучения алгоритмов машинного обучения. Популярны несколько языков программирования, похожих на искусственный интеллект, таких как Python, R и Java.

Наша команда DBMR исследовала рынок программного обеспечения для внедрения машинного обучения и стала свидетелем того, что Северная Америка доминирует на рынке программного обеспечения для внедрения машинного обучения в течение прогнозируемого периода 2022-2029 годов и продолжит процветать свою тенденцию доминирования в течение прогнозируемого периода из-за присутствия крупных ключевых игроков и увеличение количества технических инноваций в этом регионе. Ожидается, что среднегодовой темп роста рынка составит 44,7% в прогнозируемый период 2022-2029 гг.

Чтобы узнать больше об исследовании, посетите: https://www.databridgemarketresearch.com/ru/reports/global-machine-learning-operationalization-software-market

История ИИ

Хотя в последнее время ИИ стал более распространенным из-за увеличения объемов данных, передовых алгоритмов, а также улучшений вычислительной мощности и хранилища, этот термин был введен в 1956 году. В тот момент они исследовали такие предметы, как решение проблем и символические методы. В 1960-х годах Министерство обороны США проявило искренний интерес к этой области и начало обучать компьютеры имитировать базовые человеческие рассуждения. Например, Агентство перспективных исследовательских проектов Министерства обороны (DARPA) завершило проекты по картированию улиц в 1970-х годах. Эта ранняя работа проложила путь к автоматизации и формальным рассуждениям, которые сегодня можно увидеть в компьютерах, включая системы поддержки принятия решений и интеллектуальные поисковые системы, призванные дополнять и расширять человеческие способности.

Как ИИ меняет наш мир

ИИ благословляет нашу жизнь значительными преимуществами, такими как рекомендации по онлайн-поиску, чат-боты, голосовые помощники и многое другое. С каждым днем ​​оно становится неотъемлемой частью нашей жизни. В будущем ИИ принесет огромные преимущества, поскольку приведет к повышению темпов производства и производительности в различных секторах. В настоящее время, а также в ближайшем будущем автоматизация с использованием искусственного интеллекта требует много времени. Часы ручной работы можно автоматизировать. Это применимо везде. Его можно использовать повсюду, предсказывая движение транспорта или погодные условия. Использование автоматизации в ИИ является одним из главных преимуществ среди других.

Преимущества искусственного интеллекта

Pharmaceutical Market of AI at a Glance

  • Сокращение человеческих ошибок

Искусственный интеллект полезен для уменьшения так называемой «человеческой ошибки». Люди обязаны совершать ошибки, но это не относится к компьютерным системам. Компьютеры не совершают подобных ошибок, если они правильно запрограммированы. ИИ эффективно реализуется за счет применения ранее собранной информации с помощью определенного набора алгоритмов. Следовательно, ошибки в этом отношении сводятся к минимуму, и возможность более высокой степени точности становится выше.

  • Рискует вместо людей

Преодолеть ряд рискованных ограничений человека можно с помощью искусственного интеллекта-робота, который, в свою очередь, может делать за нас сложные вещи, и это одно из наиболее значительных преимуществ искусственного интеллекта.

Например, если мы вернемся назад и вспомним взрыв Чернобыльской АЭС в Украине, то в то время не было роботов с искусственным интеллектом, которые могли бы помочь нам минимизировать воздействие радиации в этой ситуации; Роботы с искусственным интеллектом могли бы спасти огромную толпу, минимизировав пожар. Роботы с искусственным интеллектом могут использоваться в таких случаях, когда вмешательство может быть опасным.

  • Полная доступность

Если не учитывать перерывы, среднестатистический человек будет работать примерно 4–6 часов в день. Работать целый день становится для человека трудным и невозможным. Поддерживать баланс между работой и личной жизнью, выполнять личные обязанности и утомительно работать очень сложно. Иногда какая-то работа необходима и должна быть завершена в определенные сроки, но иногда это невозможно. Используя ИИ, мы можем заставить машины работать 24х7 без перерывов, и им даже не будет скучно, в отличие от людей.

  • Помогает в исследованиях

ИИ позволяет исследователям опережать большие объемы данных из различных источников. Имея данные в реальном времени, исследования могут извлечь выгоду из широкого объема доступной информации, если ее легко перевести. Медицинские исследовательские институты, такие как Лаборатория данных о детском раке, разрабатывают полезное программное обеспечение для медицинских работников, позволяющее лучше управлять широким сбором данных. ИИ также широко используется для оценки и обнаружения симптомов с целью предотвращения прогрессирования заболевания. Решения телездравоохранения применяются для отслеживания прогресса пациентов, восстановления важных диагностических данных и помощи в передаче информации о населении в общие сети.

  • Уменьшите стресс врача

Согласно некоторым последним исследовательским отчетам, более половины врачей первичного звена испытывают стресс из-за сжатых сроков и других факторов на рабочем месте. ИИ помогает оптимизировать процедуры, автоматизировать функции, мгновенно обмениваться данными и организовывать операции, что обычно помогает врачам избегать жонглирования. Тем не менее, ИИ может помочь в более трудоемких операциях, объясняя диагнозы, например, медицинские работники могут испытывать некоторое облегчение стресса».

  • Более безопасные операции

Хирурги получают повышенный уровень навыков для работы в небольших помещениях, которые в противном случае могли бы потребовать открытого хирургического вмешательства. ИИ помогает в этом отношении, находя свое подходящее место в робототехнике здравоохранения, способствуя его соответствующим потребностям в хирургии. Роботы могут более точно воздействовать на чувствительные органы и ткани, снижать риск заражения, послеоперационной боли и уменьшать кровопотерю. Роботизированная хирургия имеет больше преимуществ, таких как меньшее количество рубцов и более короткое время восстановления из-за меньших разрезов. Например, в 2017 году Медицинский центр Маастрихтского университета в Нидерландах использовал робота с искусственным интеллектом для зашивания мелких кровеносных сосудов, размер некоторых из которых превышает 0,03 миллиметра. Роботом управляет хирург, чьи движения рук преобразуются в точные действия, выполняемые руками робота.

Наша команда DBMT исследовала рынок роботизированной хирургии в гинекологии и стала свидетелем доминирования Северной Америки на рынке роботизированной хирургии в гинекологии из-за растущего спроса на минимально инвазивную хирургию среди населения региона. Ожидается, что в Азиатско-Тихоокеанском регионе в течение прогнозируемого периода произойдет значительный рост благодаря растущей осведомленности о здоровье женщин и расходах на здравоохранение в регионе. Одними из основных игроков, работающих на рынке роботизированной хирургии в гинекологии, являются BOWA-electronic GmbH & Co. KG, Prima Medical, XCELLANCE Medical Technologies, ATMOS MedizinTechnik GmbH & Co. KG, Ethicon US, LLC., Johnson & Johnson Services, Inc. , Паркелл, Инк.

Чтобы узнать больше об исследовании, посетите: https://www.databridgemarketresearch.com/ru/reports/global-gynecology-robotic-surgery-market

  • Повышенная профилактическая помощь

ИИ и машинное обучение помогают в профилактике и лечении инфекционных заболеваний. Платформа анализа вспышек Blue Dot помогает анализировать авиабилеты и маршруты полетов для точного прогнозирования пути распространения COVID-19 из Уханя в Бангкок, Сеул и Тайбэй. Аналогичным образом, системы с поддержкой искусственного интеллекта могут помочь врачам обнаружить распространение заболевания, когда пациенты попадают в отделение неотложной помощи с быстрой диагностикой, чтобы обеспечить эффективные процедуры изоляции и карантина.

  • Сокращение общих затрат

ИИ помогает значительно сократить время, затрачиваемое на выполнение отдельных процессов, и стоимость этих процессов. Например, ИИ может анализировать миллионы изображений на предмет выявления признаков заболевания. Это исключает дорогостоящую ручную работу. Пациентов лечат быстрее и эффективнее, что дает ряд преимуществ, таких как уменьшение количества госпитализаций, времени ожидания и потребности в койках.

Недавнее исследование предсказало существенную экономию средств за счет автоматизации ИИ в нескольких областях, а именно:

  • Уменьшение ошибок дозировки – 16 миллиардов долларов
  • Роботизированная хирургия – 40 миллиардов долларов
  • Помощь в административном рабочем процессе – 18 миллиардов долларов.
  • Виртуальные медсестры – 20 миллиардов долларов
  • Обнаружение мошенничества – 17 миллиардов долларов.

Наша команда DBMR исследовала рынок минимально инвазивной медицинской робототехники, систем визуализации и визуализации и хирургических инструментов и стала свидетелем того, что к 2028 году объем рынка составит 91,22 миллиарда долларов США, а среднегодовой темп роста составит 8,6% в вышеупомянутый прогнозируемый период. Регион Северной Америки лидирует на рынке малоинвазивной медицинской робототехники, систем визуализации и хирургических инструментов из-за высокого уровня случайных травм в регионе и большого количества пожилых людей. Ожидается, что Азиатско-Тихоокеанский регион будет расширяться значительными темпами в течение прогнозируемого периода с 2021 по 2028 год из-за дорожно-транспортных происшествий, увеличения престарелого населения в Японии и Китае, а также ожидается, что развивающиеся экономики будут способствовать появлению процедур MIS в этом конкретном регионе. .

Чтобы узнать больше об исследовании, посетите:https://www.databridgemarketresearch.com/ru/reports/global-minimally-инвазивный-medical-robotics-imaging-visualization-systems-surgical-instruments-market

ИИ в сфере здравоохранения

Огромное участие ИИ в разработке фармацевтического продукта дает ему рациональный дизайн лекарств; помощь в принятии решений; понимает правильную терапию для пациента, включая персонализированные лекарства; и управляет клиническими данными, полученными и используемыми для будущей разработки лекарств. Например, E-VAI — это платформа искусственного интеллекта для анализа и принятия решений, разработанная Eularis, которая использует алгоритмы машинного обучения для создания аналитических дорожных карт на основе данных конкурентов, ключевых заинтересованных сторон и занимаемой в настоящее время доли рынка для прогнозирования основных факторов продаж фармацевтика, которая помогает руководителям маркетинга распределять ресурсы для максимального увеличения доли рынка, а также позволяет им рассчитывать, куда вкладывать средства.

ИИ играет жизненно важную роль в открытии лекарств. ИИ может распознавать ключевые и ведущие соединения, обеспечивать более быструю проверку целевого действия препарата в течение короткого времени и оптимизировать конструкцию структуры лекарства. Он имеет широкое применение в различных аспектах открытия лекарств. Это объясняется ниже:

Pharmaceutical Market of AI at a Glance

Несмотря на преимущества, с которыми сталкивается ИИ, у него есть некоторые серьезные проблемы с данными, такие как масштаб данных, рост, разнообразие и неопределенность. Наборы данных, доступные для разработки лекарств в различных фармацевтических компаниях, могут включать миллионы соединений и обычных инструментов МО, которые не могут справиться с такими проблемами.

Например, вычислительная модель на основе количественного соотношения структура-активность (QSAR) может прогнозировать большое количество соединений или простых физико-химических параметров, таких как log P или log D, за короткое время. Кроме того, модели на основе QSAR также сталкиваются с серьезными проблемами, такими как ошибки экспериментальных данных в обучающих наборах, небольшие обучающие наборы и отсутствие экспериментальных проверок.

Было внедрено множество методов in silico и соединений виртуального экрана из виртуальных химических пространств, что в сочетании с подходами, основанными на структуре и лигандах, обеспечивает лучший анализ профиля, более быстрое удаление соединений, не содержащих свинца, и отбор молекул лекарств с сокращение расходов. Алгоритмы разработки лекарств, такие как кулоновские матрицы и распознавание молекулярных отпечатков пальцев, учитывают физические, химические и токсикологические профили, чтобы помочь в выборе ведущего соединения.

Наша команда DBMR исследовала рынок открытия лекарств in silico и стала свидетелем того, что регион Северной Америки лидирует на рынке открытия лекарств in silico благодаря быстрому технологическому прогрессу, сильному присутствию сильных поставщиков и наличию большой популяции пациентов, страдающих от различных хронических и инфекционные заболевания. Ожидается, что Азиатско-Тихоокеанский регион будет расширяться значительными темпами из-за увеличения числа ученых и обширных исследований в области рака и диабета. Кроме того, ожидается, что быстрый рост в области идентификации биомаркеров и сосредоточение внимания на снижении показателей повторной госпитализации и медицинских ошибок также будут способствовать росту мирового рынка.

Чтобы узнать больше об исследовании, посетите:https://www.databridgemarketresearch.com/ru/reports/global-in-silico-drug-discovery-market

Список инструментов искусственного интеллекта, используемых при открытии лекарств

Различные инструменты искусственного интеллекта широко используются при разработке лекарств. Доступно несколько веб-инструментов, таких как LimTox, admetSAR, Toxtree и pkCSM, которые помогают снизить стоимость множества различных анализов. Передовые подходы на основе искусственного интеллекта в основном ищут сходство соединений или прогнозируют токсичность соединений на основе входных характеристик. Еще одним примером такого инструмента является eToxPred, который помогает оценить токсичность соединений и возможность синтеза многих небольших органических молекул с точностью до 72%. Также имеется множество других инструментов, которые помогают прогнозировать токсичность соединения. Зачастую некоторые лекарства, одобренные FDA, вызывают серьезные побочные эффекты, которые необходимо прогнозировать как можно раньше; в этом отношении используются эти инструменты искусственного интеллекта. Инструменты ИИ представляют собой широкий спектр наборов, но здесь мы упомянем некоторые из инструментов:

Pharmaceutical Market of AI at a Glance

Фармацевтический рынок искусственного интеллекта: краткий обзор

Многие фармацевтические компании переходят на искусственный интеллект, чтобы снизить финансовые затраты и вероятность неудач, связанных с экспериментами. Рынок искусственного интеллекта увеличился с 200 миллионов долларов США в 2015 году до 700 миллионов долларов США в 2018 году, и, по прогнозам, к 2024 году он достигнет 5 миллиардов долларов. Ожидается, что ИИ произведет революцию в фармацевтическом и медицинском секторах, и прогнозируется, что его рост составит 40%. рост с 2017 по 2024 год. Многие фармацевтические компании сделали крупные инвестиции и продолжают инвестировать в искусственный интеллект, а также объединились с несколькими компаниями, занимающимися искусственным интеллектом, для разработки основных инструментов здравоохранения. Например, компания DeepMind Technologies, дочерняя компания Google, сотрудничает с фондом Royal Free London NHS Foundation Trust, который использовался для оказания помощи при остром повреждении почек. Другой пример — компании Boehringer Ingelheim и HealX, которые сотрудничали в поиске методов лечения редких неврологических заболеваний. Eli Lilly, Company и Atomwise сотрудничали в разработке лекарств, воздействующих на новые белковые мишени. Еще одним в списке является сотрудничество компаний Mateon Therapeutics и PointR Data, которое помогло лечить меланому поздней стадии, рак поджелудочной железы и глиому. Ф. Хоффманн-Ла Рош и Оукин провели множество клинических испытаний на основе алгоритмов машинного обучения.

Передовые приложения на основе искусственного интеллекта

  • Нанороботы на базе искусственного интеллекта для доставки лекарств

Нанороботы в основном состоят из интегральных схем, датчиков, источников питания и безопасного резервного копирования данных, которые поддерживаются с помощью вычислительных технологий, таких как искусственный интеллект. Они запрограммированы на предотвращение столкновения, идентификацию цели, обнаружение и прикрепление и, наконец, выведение из тела. Последние достижения в области нано/микророботов позволяют им перемещаться к целевому месту в зависимости от физиологических условий, таких как pH, повышая эффективность и снижая системные побочные эффекты.

Необходимо учитывать множество параметров, таких как корректировка дозы, замедленное высвобождение, контрольное высвобождение и высвобождение лекарств, которые необходимо контролировать для соответствующей доставки лекарств. Имплантаты с микрочипом используются для запрограммированного высвобождения имплантата, а также для определения соответствующего местоположения имплантата в организме.

Наша команда DBMR исследовала рынок нанороботов и стала свидетелем того, что Северная Америка доминирует на рынке нанороботов благодаря росту внедрения технологий наноробототехники. Кроме того, наличие сложной инфраструктуры здравоохранения будет способствовать дальнейшему росту рынка нанороботов в регионе в течение прогнозируемого периода. По оценкам, растущие области применения микроскопов и объединение микроскопии со спектроскопией откроют потенциальные возможности для роста рынка нанороботов в ближайшие годы.

Чтобы узнать больше об исследовании, посетите:https://www.databridgemarketresearch.com/ru/reports/global-nanorobots-market

  • Появление ИИ в наномедицине

Использование нанотехнологий определенно растет. Ученые полагаются на эту методологию и все больше ее используют в области медицины. Наномедицины используются для диагностики и лечения многих сложных заболеваний, а именно ВИЧ, рака, малярии, астмы и различных воспалительных заболеваний. В последние годы доставка лекарств, модифицированных наночастицами, стала необходимой в области терапии и диагностики из-за ее повышенной эффективности и лечения. Если нанотехнологии смешать с искусственным интеллектом, это может решить многие проблемы при разработке рецептур. Например, с помощью ИИ были получены силикасомы. Силикасомы представляют собой комбинацию iRGD, пептида, проникающего в опухоль, и нагруженных иринотеканом многофункциональных мезопористых наночастиц кремнезема. Наномедицины увеличили поглощение силикасом в три-четыре раза, поскольку iRGD помогает улучшить трансцитоз силикасом.

  • ИИ в комбинированной доставке лекарств и прогнозировании синергизма/антагонизма

Было одобрено и поступило на рынок несколько новых комбинаций препаратов для лечения сложных заболеваний, таких как туберкулез и рак, поскольку они могут обеспечить синергический эффект для быстрого выздоровления пациентов.. Потенциальные препараты, выбранные для этой комбинации, требуют высокопроизводительного скрининга значительного числа лекарств, что делает этот процесс утомительным. Например, терапия рака включает комбинацию шести или семи препаратов. Рашид и др. разработали модель платформы оптимизации квадратичного фенотипа, которая используется для определения оптимальной комбинированной терапии для лечения множественной миеломы, устойчивой к бортезомибу, с помощью коллекции из 114 препаратов, одобренных FDA. Два лучших препарата, участвующих в этой модели, — это децитабин (Dec) и митомицин C (MitoC).

Помимо передовых приложений ИИ, он также имеет важное значение для позиционирования на рынке. Благодаря простоте технологий и электронной коммерции всем компаниям стало проще рекламировать свой бренд на общедоступной платформе. Одним из наиболее часто используемых инструментов является SEO, который большинство компаний используют, чтобы занять фиксированную позицию в онлайн-маркетинге и помочь позиционировать продукт на рынке. Компании постоянно стараются занять более высокую позицию в игре, за короткое время обеспечив признание своего бренда.

Наша команда DBMR исследовала рынок упаковки для электронной коммерции и стала свидетелем того, что Азиатско-Тихоокеанский регион доминирует на рынке упаковки для электронной коммерции с точки зрения доли рынка и доходов и будет продолжать укреплять свое доминирование в течение прогнозируемого периода. Это связано с растущим предпочтением потребителей к коробкам из гофрированного картона в развивающихся странах, таких как Индия, Китай и Япония. Китай лидирует на рынке Азиатско-Тихоокеанского региона. Covid-19 ускорил рост рынка. Covid-19 ограничил передвижение людей и материалов. Электронная коммерция сыграла важную роль в пандемии, поскольку увеличился спрос на товары первой необходимости, такие как продукты питания, лекарства, овощи и другие продукты.

Чтобы узнать больше об исследовании, посетите:https://www.databridgemarketresearch.com/ru/reports/global-e-commerce-packaging-market

Заключение:

С развитием искусственного интеллекта и его замечательных инструментов фармацевтические компании получают преимущества во многих аспектах. Это влияет на процесс разработки лекарств, а также на общий жизненный цикл продукта, что, в свою очередь, легко объясняет рост количества стартапов. Сектор здравоохранения сталкивается со многими проблемами, такими как рост стоимости лекарств и методов лечения. Общество нуждается в существенных изменениях в этой сфере, которым необходимо придавать значение. По мере того, как наступает эпоха цифрового здравоохранения и растет распространенность ИИ, также появляются персонализированные лекарства с желаемой дозой, параметрами высвобождения и другими необходимыми аспектами, которые могут быть изготовлены в соответствии с индивидуальными потребностями пациента. Технологии на основе искусственного интеллекта не только помогут ускорить время, необходимое для выхода продуктов на рынок, но, кроме того, они также помогут улучшить продукты и повысить общую безопасность производственного процесса.

Кроме того, это также обеспечит лучшее использование экономически эффективных и доступных ресурсов, тем самым повышая важность автоматизации. Помимо этого аспекта, наиболее серьезной проблемой, связанной с внедрением этих технологий, являются связанные с этим потери рабочих мест и строгие правила, необходимые для работы ИИ. Однако эти системы способствуют поощрению простоты у людей и не заменяют их полностью. Многие продавцы включают компоненты искусственного интеллекта в свои стандартные предложения или предоставляют доступ к платформам искусственного интеллекта как услуги (AIaaS). Затраты на оборудование, программное обеспечение и персонал для ИИ могут дорого обойтись. Значение AIAaS заключается в том, что он позволяет отдельным лицам и компаниям экспериментировать с ИИ для нескольких бизнес-целей. Различные области ИИ, а именно машинное обучение, нейронные сети и глубокое обучение, также в равной степени полезны в разработке лекарств. Помимо этого, несколько других технологий поддерживают и обеспечивают возможности ИИ, а именно компьютерное зрение, Интернет вещей, передовые алгоритмы и графические процессоры.


Отзывы клиентов