Статьи

14 декабря 2022 г.

Применение ИИ в диагностике рака

Алгоритмы или компьютерные программы, которые используют данные для определения хода действий или прогнозирования, называются искусственным интеллектом. Чтобы компьютер мог изучить данные и прийти к выводу, ученые могут разработать набор правил или инструкций, которым компьютер будет следовать. Машинное обучение — это еще один метод искусственного интеллекта, при котором система обучается оценивать и понимать данные. В результате алгоритмы машинного обучения могут обнаруживать закономерности, которые человеческому глазу или мозгу трудно распознать. Кроме того, эти алгоритмы лучше изучают и интерпретируют данные, поскольку им предоставляется более свежая информация.

По данным Data Bridge Market Research, в прогнозируемый период 2022-2029 годов ожидается, что искусственный интеллект на рынке здравоохранения будет расти в среднем на 51,37%. Это указывает на то, что рыночная стоимость, которая в 2021 году составляла 6,35 миллиарда долларов США, к 2029 году вырастет до 175,22 миллиарда долларов США. В январе 2019 года Dartford and Gravesham NHS Trust в Соединенном Королевстве разработали носимую технологию на базе искусственного интеллекта для мониторинга пациентов при выписке. из больниц. В октябре 2019 года care.ai и NVIDIA объявили о сотрудничестве по обеспечению автономного мониторинга пациентов на базе искусственного интеллекта в сфере здравоохранения с использованием платформы NVIDIA.

Чтобы узнать больше об исследовании, посетите:https://www.databridgemarketresearch.com/ru/reports/global-artificial-intelligence-in-healthcare-market

Глубокое обучение, разновидность машинного обучения, также применяется исследователями в области визуализации рака. Глубокое обучение относится к алгоритмам, которые классифицируют данные методами, аналогичными человеческому мозгу. Искусственные нейронные сети используются технологиями глубокого обучения для моделирования того, как клетки нашего мозга получают, интерпретируют и реагируют на сообщения от остального тела. Чтобы определить, является ли образование раковым или нет, врачи проводят визуализирующие исследования рака. Как быстро оно развивается, если это рак? Насколько велик этот разброс? Выздоровел ли он после лечения? Согласно исследованиям, ИИ может повысить оперативность, точность и надежность ответов медицинских работников. Применение ИИ в онкологии можно понимать на разных этапах:

AI in Oncology

Рис.1: Роль ИИ в онкологии

  • Обнаружение рака на ранней стадии Людей регулярно обследуют на наличие признаков рака или клеток, которые могут перерасти в рак, с помощью таких процедур, как маммография и Пап-тест. Целью является выявление и лечение рака на ранней стадии, прежде чем он распространится или даже разрастется. Чтобы помочь с скрининговыми тестами на рак молочной железы и другими видами скринингового тестирования на рак, ученые создали технологии искусственного интеллекта. За последние 20 лет компьютерные алгоритмы на основе искусственного интеллекта помогли врачам расшифровать маммограммы, но эта область исследований быстро развивается. Система искусственного интеллекта была разработана одной командой, чтобы помочь решить, как часто женщинам следует проверяться на рак молочной железы. Алгоритм прогнозирует вероятность заболевания раком молочной железы у человека в течение следующих пяти лет на основе результатов маммографии. Модель показала лучшие результаты в тестах, чем существующие методы прогнозирования риска рака молочной железы. Исследователи NCI разработали и протестировали алгоритм глубокого обучения, который может распознавать предраковые состояния шейки матки, которые необходимо удалить или лечить. Медицинские работники в некоторых ситуациях с ограниченными ресурсами исследуют шейку матки с помощью крошечной камеры на предмет предрака шейки матки. Этот подход является простым и устойчивым; однако он не очень точен и надежен. В клинических исследованиях было продемонстрировано несколько технологий искусственного интеллекта для улучшения диагностики аденом — предраковых новообразований, которые могут привести к раку толстой кишки. Некоторые специалисты обеспокоены тем, что эти технологии искусственного интеллекта могут вынудить многих людей пройти ненужное лечение и дополнительные обследования, поскольку лишь небольшая часть аденом перерастает в рак.
  • Обнаружение и диагностика рака- ИИ способен помочь диагностировать рак на более ранних стадиях у людей, у которых уже есть признаки. Например, модель искусственного интеллекта, созданная доктором Теркби и его коллегами из Центра онкологических исследований NCI, может облегчить рентгенологам выявление рака простаты, который может быть агрессивным, с помощью относительно нового типа МРТ простаты, известного как многопараметрическая МРТ. По словам доктора Теркби, модель искусственного интеллекта, разработанная командой NCI, «может свести к минимуму частоту ошибок и облегчить процесс обучения практикующим рентгенологам». Он сказал, что модель ИИ может действовать как «виртуальный эксперт» для менее опытных рентгенологов, которые учатся использовать многопараметрическую МРТ. Многие модели искусственного интеллекта с глубоким обучением были разработаны, чтобы помочь врачам выявлять рак легких при компьютерной томографии. Существует значительная часть ложноположительных результатов тестов, которые указывают на то, что у человека рак легких, хотя на самом деле это не так, потому что некоторые нераковые отклонения в легких могут показаться на компьютерной томографии очень похожими на рак. Теоретически ИИ может снизить частоту ложноположительных результатов и избавить некоторых пациентов от ненужного стресса, последующих обследований и операций за счет лучшей дифференциации рака легких от нераковых изменений на КТ-изображениях. Команда исследователей создала алгоритм глубокого обучения, позволяющий обнаружить рак легких и избежать других изменений, напоминающих рак.
  • Выбор лечения рака Врачи также используют визуализирующие тесты для сбора важных данных о раке, например, о том, как быстро он развивается, распространился ли он и может ли он вернуться после терапии. Врачи могут использовать эту информацию, чтобы определить лучший курс действий для своих пациентов. Многочисленные исследования показывают, что ИИ может быть способен более точно и полно извлекать прогностические данные из сканированных изображений, чем это делают люди в настоящее время. Например, модель глубокого обучения, разработанная доктором Хармон и ее коллегами, может предсказать риск того, что пациенту с раком мочевого пузыря потребуются дополнительные методы лечения в дополнение к хирургическому вмешательству. По мнению медицинских работников, скопления раковых клеток, вышедшие за пределы мочевого пузыря, примерно у 50% людей с опухолями в мышцах мочевого пузыря (мышечно-инвазивный рак мочевого пузыря) слишком малы, чтобы их можно было обнаружить обычными методами. Эти необнаруженные клетки могут продолжать размножаться после операции, если их не удалить, что приводит к рецидиву. Эти небольшие скопления можно устранить с помощью химиотерапии, предотвращая возвращение рака после операции. Однако, по словам доктора Хармона, как показали клинические испытания, может быть сложно определить, нуждаются ли пациенты также в химиотерапии. Модель анализирует цифровые изображения исходной опухолевой ткани, чтобы определить наличие микроскопических раковых группировок в окружающих лимфатических узлах. В исследовании, опубликованном в 2020 году, модель глубокого обучения превзошла традиционный метод прогнозирования распространения рака мочевого пузыря на основе нескольких переменных, включая возраст пациента и конкретные характеристики опухоли. Все больше и больше изучается генетическая структура рака пациента, чтобы определить лучший курс действий. Китайские исследователи разработали алгоритм глубокого обучения, позволяющий предсказать существование важных генных мутаций в ткани рака печени по фотографиям ткани, чего патологоанатомы не могут сделать, просто взглянув на изображения. Ученые, создавшие алгоритм, не знают, как он определяет, какие генные изменения присутствуют в опухоли, что делает их инструмент примером ИИ, который действует удивительным образом.
  • ИИ в медицинской визуализации Предсказание рака может выиграть от искусственного интеллекта и машинного обучения. Искусственный интеллект способен выявлять уже распространившиеся злокачественные новообразования и людей, которые подвергаются высокому риску заражения, еще до того, как они это сделают. Это позволяет медицинским работникам внимательно следить за этими пациентами и быстро действовать в случае необходимости. Ученый-компьютерщик из Массачусетского технологического института по имени Регина Барзилай интересовалась тестированием искусственного интеллекта (ИИ) для прогнозирования рака. Команда Массачусетского технологического института рассмотрела возможность выявления женщин, подверженных риску рака молочной железы, до появления каких-либо явных симптомов. Чтобы выяснить, у каких пациентов был рак, она собрала более 40 000 женских маммограмм за четырехлетний период (всего около 89 000) и сравнила результаты сканирований с национальным реестром опухолей. Затем Регина использовала подборку этих фотографий для обучения алгоритму машинного обучения (ML), своего рода искусственному интеллекту, а затем использовала этот алгоритм для генерации прогнозов. Алгоритм правильно определил 30% будущих больных раком молочной железы как принадлежащих к группе высокого риска. ИИ имеет различные применения в области медицинской визуализации. Выявление и классификация злокачественных опухолей является одним из наиболее очевидных. В сентябре 2021 года FDA одобрило Paige Prostate, инструмент для диагностики рака на базе искусственного интеллекта. Вместе с цифровой патологоанатомической программой FullFocus этот инструмент с искусственным интеллектом помогает в обнаружении рака простаты. FDA рассмотрело данные клинического исследования, в ходе которого 16 патологоанатомов оценили 527 фотографий биопсии простаты в поисках показателей рака в качестве предварительного условия для этого одобрения.
  • ИИ в анализе крови- Анализ крови с усовершенствованиями искусственного интеллекта может помочь врачам более точно выявлять рак. Согласно исследованию Cancer Cell International, профилирование крови, при котором анализируются профили цДНК и микроРНК плазмы с использованием алгоритмов искусственного интеллекта, является более эффективным способом обнаружения и мониторинга рака, чем обычная компьютерная томография. Исследователи онкологического центра Джонса Хопкинса Киммела разработали передовую методику на основе искусственного интеллекта для выявления рака легких с помощью анализа крови. Для проверки этого метода были использованы образцы крови 796 участников из США, Дании и Нидерландов. Исследователи сопоставили этот анализ крови с белковыми биомаркерами, клиническими факторами риска и компьютерной томографией пациентов. В результате они правильно определили рак у 91% людей на ранних стадиях заболевания и у 96% пациентов на поздних стадиях рака.
  • ИИ в иммунотерапии- Основная функция ИИ в иммунотерапии — оценка результатов различных методов лечения и помощь врачам в изменении их рецептов. Исследовательская группа из Онкологического центра доктора медицинских наук Андерсона и Юго-западного медицинского центра Техасского университета разработала метод на основе искусственного интеллекта, чтобы определить, распознаются ли неоантигены — пептиды, образующиеся при мутации геномов раковых клеток — иммунной системой пациента. Такие алгоритмы искусственного интеллекта позволят предсказать, как раковые клетки отреагируют на иммунотерапию. Т-клетки нашей иммунной системы всегда ищут признаки рака и других инвазивных организмов. Эти клетки связываются друг с другом, когда идентифицируют неоантигены. Однако некоторые неоантигены остаются неидентифицированными, что способствует распространению рака. Эта информация позволит предвидеть реакцию пациента на иммунотерапию и создать индивидуализированную терапию на основе Т-клеток и противораковые вакцины.

Ожидается, что в прогнозируемый период с 2022 по 2029 год на рынке иммуноонкологии (IO) будет наблюдаться рост рынка на уровне 8,90%. Рынок иммуноонкологии (IO) сегментирован по типу, цели, показанию, цели Пользователи и канал распространения. По прогнозам, в Азиатско-Тихоокеанском регионе будет наблюдаться значительный рост благоприятных темпов роста внедрения иммунотерапии рака. Более того, ожидается, что рост заболеваемости и, в свою очередь, увеличение уровня смертности будут способствовать росту рынка иммуноонкологии (ИО) в регионе в ближайшие годы.

Чтобы узнать больше об исследовании, посетите:https://www.databridgemarketresearch.com/ru/reports/global-immuno-oncology-market

  • Разработка лекарств- Одно и то же лекарство может по-разному реагировать на различные формы рака. ИИ способен предсказывать, как различные лекарства повлияют на злокачественные клетки. Эта информация помогает в создании новых противораковых препаратов и выборе времени их использования. Например, в зависимости от мутационного состояния раковой клетки исследовательская группа создала алгоритм случайного леса, который может прогнозировать действие противораковых препаратов.

Преимущества ИИ в онкологии

ИИ обычно имеет множество преимуществ в медицинской сфере. Вот три основных преимущества использования искусственного интеллекта в обнаружении и лечении рака:

AI in Oncology

Рис.2: Преимущества ИИ в онкологии

  • Персонализированная медицина и терапия - Большие данные и искусственный интеллект позволяют медицинским работникам изучать различные данные о пациенте и раковых клетках для разработки индивидуального лечения. Побочные эффекты такого рода терапии будут менее серьезными. Здоровым клеткам будет нанесен меньший вред, но больший эффект он окажет на раковые клетки. ИИ помогает рентгенологам определить, какие опухоли и аномалии являются раковыми и требуют настоящего медицинского вмешательства. Согласно исследованию, опубликованному в журнале Национального института рака, алгоритмы искусственного интеллекта могут идентифицировать предраковые поражения на снимках шейки матки и отличать их от других аномалий, чтобы избавить пациентов от ненужного лечения из-за небольших проблем.
  • Устранение инвазивных процедур- Иногда доброкачественный характер опухоли обнаруживается только после операции по удалению, что позволило бы полностью избежать процедуры. Подобные случаи можно значительно уменьшить с помощью ИИ в процессе обнаружения рака. Одно исследование, например, показало, что ИИ может сократить количество процедур по сохранению груди на 30,6%. Игольчатая биопсия под визуальным контролем может использоваться для обучения алгоритмов машинного обучения распознаванию злокачественных опухолей. Система ML со случайным лесом использовалась для оценки 335 потенциальных больных раком, и исследователи обнаружили, что она остановила одну треть ненужных процедур.
  • Снижение количества ложных срабатываний и негативов. ИИ для обнаружения рака повысит точность диагностики и уменьшит количество ложноположительных и отрицательных результатов. У нас есть доказательства благодаря исследованиям по выявлению рака молочной железы. Каждая десятая пациентка, проходящая маммографию у врачей, имеет ложноположительные результаты, что вынуждает их проходить стрессовые процедуры и ненужные инвазивные тесты. Исследовательская группа Google создала программное обеспечение, которое использует искусственный интеллект для уменьшения ложноположительных и ложноотрицательных результатов маммографии на 6% и 9% соответственно. Другая группа исследователей создала алгоритм искусственного интеллекта для выявления рака молочной железы. Этот алгоритм помог рентгенологам снизить частоту ложноположительных результатов во время обследования на 37,3%.

Проблемы искусственного интеллекта в онкологии и перспективы на будущее

Сложные нелинейные взаимодействия, отказоустойчивость, одновременная распределенная обработка и обучение — все это задачи, с которыми ИИ может легко справиться. благодаря преимуществам самоадаптации, одновременной обработке количественной и качественной информации, а также подтвержденным результатам многочисленных клинических исследований в различных областях. Нет сомнений в том, что ИИ используется в клинической практике различными способами. Он полностью использует различные аспекты клинической изменчивости, а также решает проблему нынешнего отсутствия универсальности и объективности в экспертных системах. Больницы могут обучать младших врачей клинической диагностике и принятию решений с помощью ИИ. Все больше научных статей обсуждают замечательные диагностические и прогнозные возможности компьютерных систем на основе машинного обучения.

Чтобы гарантировать свое применение в диагностике и прогнозировании рака, технология искусственного интеллекта сталкивается с некоторыми серьезными трудностями, которые необходимо преодолеть. Например, нельзя использовать необработанные входные данные медицинских изображений. Обработка и извлечение информации из данных изображения имеют важное значение. Необходимы дальнейшие исследования для интерпретации результатов весового коэффициента в моделях нейронных сетей, которые были проверены, рассчитаны и имеют адекватные доверительные интервалы благодаря технологическому развитию и широкому распространению. Область клинической медицины, вероятно, будет использовать ИНС чаще в результате более масштабных их исследований. Хотя ценность ИИ в этой отрасли признана, ученые-компьютерщики и медицинские работники должны работать вместе, чтобы обеспечить обучение и сотрудничество междисциплинарных сотрудников. Медицинские работники смогут затем использовать потенциал этой технологии экономически эффективным и практичным способом. Гарантии конфиденциальности и безопасности данных являются серьезной проблемой в отношении будущего искусственного интеллекта в медицине. Хотя «большие данные» и решения на основе машинного обучения вызвали большой ажиотаж в последние годы, в настоящее время очень мало случаев, показывающих, как ИИ повлиял на клиническую практику.

Согласно анализу Data Bridge Market Research, к 2029 году рынок диагностики рака, как ожидается, достигнет стоимости в 28,21 миллиарда долларов США при среднегодовом темпе роста 7,29% в течение прогнозируемого периода. Рост заболеваемости раком открывает возможности для роста рынка. Рак является второй по значимости причиной смертности в мире: к 2020 году на его долю приходится 10 миллионов смертей. На рак приходится примерно одна шестая часть всех смертей во всем мире (Источник: Всемирная организация здравоохранения). В 2020 году было зарегистрировано 19,3 миллиона новых случаев рака, и ожидается, что к 2040 году это число вырастет до 30,2 миллиона. Этот рост заболеваемости раком можно объяснить ростом гериатрического населения, а также населения в целом.

Чтобы узнать больше об исследовании, посетите:https://www.databridgemarketresearch.com/ru/reports/global-cancer-diagnostics-market


Отзывы клиентов