Articles

Feb, 08 2023

Как компьютерная наука способствует лечению рака?

Рак является основной причиной смерти на глобальном уровне. Глобальная война против рака не нова. Она продолжается уже десятилетиями. Глобальная цель борьбы с раком и победы над ним настолько сильна, что все, от исследователей до ученых, неустанно сотрудничают, чтобы положить конец этому всемирному бремени.

Введение

Область компьютерных наук в прошлом показала замечательные и многообещающие результаты в этой битве против рака. Растущие расходы, направленные на исследования и разработки, связанные с применением компьютерных наук в диагностике и лечении рака, являются положительным знаком для мировой индустрии здравоохранения. Но прежде чем понять роль компьютерных наук в онкологии, давайте рассмотрим недавнюю мировую статистику по раку. 

Как компьютерная наука способствует лечению рака

Рис.1: Статистика рака 2023 (США)

Источник: Cancer.org

Наиболее типичные диагнозы рака у мужчин и женщин в 2023 году показаны на рисунке 1. Почти половина (48%) всех случаев рака у мужчин приходится на рак простаты, легких и бронхов (далее легкие) и колоректальный рак (КРР), причем 29% диагнозов приходится только на рак простаты. Только рак молочной железы составляет 31% всех диагнозов рака у женщин, тогда как рак легких, КРР и рак молочной железы вместе составляют 52% всех новых диагнозов. Прогнозируемое количество новых случаев и летальных исходов от десяти основных типов рака в Соединенных Штатах по полу в 2023 году. Оценки округлены до ближайшего десятка, и случаи не включают рак мочевого пузыря in situ или базальноклеточный и плоскоклеточный рак кожи.

Как компьютерная наука способствует лечению рака

Рис.2: Тенденции заболеваемости раком (1975–2019) и смертности от рака (1975–2020) по полу (США)

Источник: Cancer.org

Рисунок 2 отображает долгосрочные тенденции в общих показателях заболеваемости раком, которые отражают закономерности поведения, связанного с риском возникновения рака, и изменения в медицинской практике, такие как скрининговые тесты на рак. На самом деле, всплеск заболеваемости среди мужчин в начале 1990-х годов отражает всплеск выявления бессимптомного рака простаты в результате повсеместного быстрого внедрения тестирования на простат-специфический антиген (ПСА) среди ранее не проходивших скрининг мужчин. После этого заболеваемость раком среди мужчин снижалась примерно до 2013 года, а затем стабилизировалась до 2019 года. Показатели среди женщин были относительно стабильными до середины 1980-х годов, когда они начали медленно расти на 0,5% в год.

В результате гендерный разрыв постепенно сокращается, и соотношение заболеваемости мужчин и женщин снизилось с 1,59 (95% ДИ, 1,57–1,61) в 1992 году до 1,14 (95% ДИ, 1,14–1,15) в 2019 году. Однако различия в рисках сильно различаются в зависимости от возраста. Например, у женщин показатели примерно на 80% выше, чем у мужчин в возрасте от 20 до 49 лет, в то время как у мужчин показатели почти на 50% выше в возрасте от 75 лет и старше.

C & CSc: Рак и компьютерные науки

Эти цифры не только подчеркивают ужасающую реальность этого распространенного заболевания, но и имеют решающее значение для ученых, политиков и других специалистов, поскольку им необходимо сначала понять влияние рака на население мира, прежде чем разрабатывать меры по борьбе с ним.

Среди недавно предложенных методов есть поразительный призыв к действию для маловероятной группы кандидатов — компьютерных ученых. Эти последние достижения в борьбе с раком имеют потенциал для фундаментального изменения исследовательского ландшафта в этой области и, в конечном счете, спасения тысяч жизней. Это лишь один потенциальный метод, с помощью которого компьютерная наука могла бы собирать большие данные для серьезного прогресса науки в целом.

Сиддхартха Мукерджи, американский врач и ученый индийского происхождения, пишет в своей книге «Император всех болезней: биография рака» о поразительно недавнем открытии, что рак — это наследственное заболевание, вызванное преимущественно мутациями в нашей ДНК. Таким образом, из-за этих мутаций раковые опухоли обладают невообразимым разнообразием, что делает их сложными для полного искоренения.

В результате было высказано предположение, что путем секвенирования генома раковой опухоли, что по сути является процессом перевода или расшифровки загадочного языка, составляющего уникальную последовательность ДНК опухоли, врачи смогут назначать индивидуальное, целенаправленное лечение каждому онкологическому пациенту с целью либо остановить рост опухоли, либо полностью излечить ее.

Такие специалисты по информатике, как Дэвид Паттерсон, один из директоров Лаборатории алгоритмов, машин и людей (AMP Lab) Калифорнийского университета в Беркли, были мотивированы этим в своей работе. Человеческий глаз не может выполнить такую ​​задачу самостоятельно. Чтобы правильно и успешно усвоить и проанализировать этот огромный объем данных с головокружительной скоростью, потребуется задействовать некоторые из самых мощных когнитивных вычислительных платформ в мире, таких как Watson от IBM. Участие специалистов по информатике в этом высокотехнологичном процессе даст три результата:

  • Снижение затрат на обработку информации может помочь сделать индивидуальное лечение доступным для всех

  • Это может привести к созданию хранилища геномов раковых клеток, доступного для исследователей и медицинских экспертов.

  • Он сможет найти крошечную иголку в очень большом стоге сена, используя вышеупомянутый репозиторий для поиска индивидуальной, целевой терапии для каждой уникальной опухоли среди бесчисленных возможных комбинаций препаратов.

Вычислительная онкология как расширение компьютерной науки в онкологии

Вычислительная биология устанавливает связь между физической наукой и онкологией. Вычислительная онкология — относительно новый термин в медицине, который начинает приобретать популярность. Некоторые люди могут удивиться, узнав, что огромные медицинские учреждения по всему миру создают целые отделения, обозначенные как таковые. Все больше времени, усилий, денег и ресурсов тратится на изучение того, как распространяется рак и как его можно в конечном итоге навсегда удалить из организма.

При всем при этом вероятность разработки долгосрочных решений увеличивается с накоплением информации. Чтобы организовать пути роста опухолей, биологию опухолей, биоинформатику и профили опухолевых маркеров и построить прогностические модели для лечения на основе всех этих данных, вычислительная онкология организует молекулярные аспекты рака.

Компьютерные модели используются в вычислительной онкологии для получения аналитики опухолевых маркеров, которая полезна в точной медицине, скрининге населения и моделировании отдельных раковых клеток. Эти знания повышают вероятность того, что определенные лекарства или методы лечения предложат долгосрочные средства от болезни у человека с раком.

В течение многих лет — а в определенных обстоятельствах даже сегодня — большинство людей с раком получали лечение, которое применялось только «широко». Когда молекулярные маркеры отсутствуют или менее полезны для определения точных причин, по которым определенные подходы к лечению эффективны для одних пациентов, но не для других. Чтобы лучше обслуживать пациентов, отделения вычислительной онкологии могут взять обширную информацию о нашем геноме, которую секвенирование следующего поколения (NGS) сделало доступной как в здоровых, так и в больных клетках, и организовать ее в базу данных.

Чтобы управлять всеми аспектами этой новой области медицины, некоторые департаменты ищут людей с навыками в области компьютерных наук или лабораторной науки. Для педагогов, ученых и врачей эта область расширяется. Работая вместе, мы можем расширить наши знания и навыки, чтобы уменьшить бремя рака во всем мире, которое, как прогнозируется, увеличится с 14,1 миллиона новых случаев в 2012 году до 23,6 миллиона случаев в год к 2030 году, согласно Международному агентству по изучению рака.

Data Bridge Market Research анализирует, что рынок диагностики рака, как ожидается, достигнет значения 28,21 млрд долларов США к 2029 году при среднегодовом темпе роста 7,29% в течение прогнозируемого периода. Северная Америка доминирует на рынке диагностики рака из-за растущего присутствия многочисленных компаний по биотехнологиям и медицинскому оборудованию, увеличения финансирования, доступного для научно-исследовательских и опытно-конструкторских проектов, и высокого уровня внедрения передовых технологий в регионе. Некоторые из основных игроков, работающих на рынке диагностики рака, - это Abbott. (США), DiagnoCure Inc. (Канада), Thermo Fisher Scientific Inc. (США), Illumina, Inc. (США), QIAGEN (Германия) и F. Hoffmann-La Roche Ltd (Швейцария).

Чтобы узнать больше об исследовании, посетите: https://www.databridgemarketresearch.com/reports/global-cancer-diagnostics-market

«Microsoft — это десятилетние амбиции»

Microsoft использует компьютерную науку, включая машинное обучение и алгоритмы, для борьбы с раком. Исследователи Microsoft могут модифицировать методы, обычно используемые для моделирования вычислительных процессов, для имитации биологических, подходя к раку как к системе обработки информации.

Конечная цель компании — разработать молекулярные компьютеры, которые будут давать указания организму бороться с раковыми клетками, как только они будут обнаружены. Объединяя это со стратегией, основанной на данных, усилия Microsoft по борьбе с болезнью сосредотачиваются на машинном обучении. Компания надеется использовать инструменты анализа, чтобы взять существующие биологические данные и использовать их для лучшего понимания и лечения болезни.

Это глубокое математическое открытие, а не просто аналогия. Хотя биология и вычисления могут показаться полюсами, на самом деле они имеют очень глубокие связи на самом фундаментальном уровне. Например, машинное обучение и обработка естественного языка используются для предоставления метода сортировки доступных исследовательских данных, которые затем могут быть предоставлены онкологам для разработки наиболее эффективного и индивидуального лечения рака для пациентов.

В настоящее время доступно так много информации, что одному человеку сложно прочитать ее всю и понять. Машинное обучение может обрабатывать информацию быстрее и проще, чем люди.

Машинное обучение также сочетается с компьютерным зрением, чтобы помочь рентгенологам лучше понять, как развивается опухоль пациента. Исследователи разрабатывают систему, которая в будущем будет анализировать пиксели 3D-сканов, чтобы точно определить, насколько опухоль выросла, уменьшилась или изменила форму с момента предыдущего сканирования. По словам Эндрю Филлипса, руководителя отдела биологических вычислений Кембриджской лаборатории, ученые могут извлечь уроки из наследия Microsoft как пионера в индустрии программного обеспечения. «Мы можем программировать биологию, используя методы, которые мы открыли для программирования компьютеров», — добавил он. «Это откроет гораздо больше возможностей для использования и даже более эффективных методов лечения».

Филлипс разрабатывает молекулярный компьютер, который может быть вставлен в клетку для отслеживания болезни. Ответ на борьбу с болезнью будет запущен, если датчик обнаружит, что это что-то вроде рака. Этот тип исследований также будет использовать обычные вычисления и перепрофилировать их для использования в биотехнологиях или медицинских приложениях, позволяя организму обучаться бороться с болезнью таким же образом, как мы программируем компьютеры для этого.

Хотя исследование все еще находится на ранней стадии, Филлипс сообщил The Telegraph, что через «пять-десять лет» будет технически возможно имплантировать умную молекулярную систему для борьбы с болезнью таким способом.

Заключение

Исследования рака все чаще проводятся онлайн. Специалисты по информатике должны набираться в ряды, поскольку они могут оказаться лучшими специалистами по борьбе с раком в ближайшие десять лет. Есть надежда, что, секвенировав геном раковой опухоли, медицинские специалисты вскоре смогут предоставить индивидуальную целевую терапию для замедления или остановки распространения рака.

Учитывая, как быстро компьютерная наука повлияла на жизнь пациентов и интегрировалась в исследования рака, кажется разумным предсказать, что ближайшие годы будут столь же, если не более, продуктивными. Ожидается, что в течение следующих десяти лет врачи смогут создавать подробные карты того, как развиваются и эволюционируют здоровые и больные ткани. Эти карты помогут им разрабатывать новые методы диагностики и лечения рака.

Data Bridge Market Research анализирует, что искусственный интеллект на рынке здравоохранения, который в 2022 году составит 9,64 млрд долларов США, как ожидается, достигнет 272,91 млрд долларов США к 2030 году при среднегодовом темпе роста 51,87% в прогнозируемый период с 2023 по 2030 год. Искусственный интеллект на рынке здравоохранения сегментирован на основе предложения, технологии, конечного пользователя и применения. Ожидается, что Азиатско-Тихоокеанский регион будет расти самыми высокими темпами в прогнозируемый период с 2023 по 2030 год из-за увеличения государственных инициатив по повышению осведомленности, роста медицинского туризма и растущего спроса на качественное здравоохранение в регионе.

Чтобы узнать больше об исследовании, посетите: https://www.databridgemarketresearch.com/reports/global-artificial-intelligence-in-healthcare-market


Client Testimonials