Статьи

08 февраля 2023 г.

Как информатика способствует лечению рака?

Рак является основной причиной смертности на глобальном уровне. Глобальная война против рака не нова. Это продолжается уже несколько десятилетий. Глобальная цель борьбы с раком и победы над ним настолько сильна, что все, от исследователей до ученых, неустанно сотрудничают, чтобы положить конец этому всемирному бремени.

Введение

В прошлом область информатики показала замечательные и многообещающие результаты в борьбе с раком. Растущие расходы, направленные на исследования и разработки, связанные с применением компьютерных наук в диагностике и лечении рака, являются положительным знаком для мировой индустрии здравоохранения. Но прежде чем понять роль информатики в онкологии, давайте посмотрим на недавнюю глобальную статистику рака.

How is Computer Science Contributing to Cancer Treatment

Рис.1: Статистика рака, 2023 г. (США)

Источник: Cancer.org

Наиболее типичные диагнозы рака у мужчин и женщин в 2023 году показаны на рисунке 1. Почти половина (48%) всех случаев рака у мужчин приходится на рак простаты, легких и бронхов (далее легкие), а также колоректальный рак (КРР). ), при этом 29% диагнозов связаны только с раком простаты. Только на рак молочной железы приходится 31% всех диагнозов рака у женщин, тогда как на рак легких, КРР и рак молочной железы вместе приходится 52% всех новых диагнозов. Прогнозируемое количество новых случаев и смертей от десяти основных типов рака в США в разбивке по полу в 2023 году. Оценки округлены до ближайших 10, и случаи не включают рак мочевого пузыря in situ, базально- и плоскоклеточный рак кожи. раковые заболевания.

How is Computer Science Contributing to Cancer Treatment

Рис.2: Тенденции заболеваемости раком (1975–2019 гг.) и смертности (1975–2020 гг.) в разбивке по полу (США)

Источник: Cancer.org

На рисунке 2 показаны долгосрочные тенденции общего уровня заболеваемости раком, которые отражают модели поведения, связанного с риском развития рака, и изменения в медицинской практике, например, скрининговых тестах на рак. Например, всплеск заболеваемости среди мужчин в начале 1990-х годов отражает всплеск выявления бессимптомного рака простаты в результате повсеместного быстрого внедрения тестирования на простатспецифический антиген (ПСА) среди мужчин, ранее не проходивших скрининг. После этого заболеваемость раком у мужчин снижалась примерно до 2013 года, а затем стабилизировалась до 2019 года. Показатели заболеваемости у женщин были относительно стабильными до середины 1980-х годов, когда они начали медленно расти на 0,5% в год.

В результате гендерный разрыв постепенно сокращается: соотношение заболеваемости мужчин и женщин снизилось с 1,59 (95% ДИ, 1,57–1,61) в 1992 году до 1,14 (95% ДИ, 1,14–1,15) в 2019 году. Однако , различия в риске сильно различаются в зависимости от возраста. Например, у женщин в возрасте от 20 до 49 лет этот показатель примерно на 80% выше, чем у мужчин, а у мужчин в возрасте от 75 лет и старше этот показатель почти на 50% выше.

C и CSc: рак и информатика

Эти цифры не только подчеркивают ужасную реальность этого широко распространенного заболевания, но также имеют решающее значение для ученых, политиков и других специалистов, поскольку они должны сначала осознать влияние рака на население мира, прежде чем предлагать меры по борьбе с ним.

Среди недавно предложенных методов — поразительный призыв к действию для маловероятной группы кандидатов — ученых-компьютерщиков. Эти недавние достижения в борьбе с раком могут фундаментально изменить исследовательский ландшафт в этой области и, в конечном итоге, спасти тысячи жизней. Это лишь один потенциальный метод, с помощью которого информатика могла бы собирать большие данные для серьезного развития науки в целом.

Сиддхартха Мукерджи, американский врач и ученый индийского происхождения, пишет в своей книге «Император всех болезней: биография рака» о поразительно недавнем открытии того, что рак — это наследственное заболевание, вызываемое преимущественно мутациями в нашей ДНК. Таким образом, из-за этих мутаций раковые опухоли обладают невероятным разнообразием, что затрудняет их полное искоренение.

В результате было высказано предположение, что путем секвенирования генома раковой опухоли, что по сути представляет собой процесс перевода или декодирования загадочного языка, составляющего уникальную последовательность ДНК опухоли, врачи смогут назначать индивидуальное целенаправленное лечение. для каждого больного раком с целью либо остановить рост рака, либо полностью его вылечить.

Ученые-компьютерщики, такие как Дэвид Паттерсон, один из директоров Лаборатории алгоритмов, машин и людей (AMP Lab) Калифорнийского университета в Беркли, руководствовались этим в своей работе. Человеческий глаз не может выполнить такую ​​задачу сам по себе. Чтобы правильно и успешно поглощать и анализировать этот огромный объем данных с головокружительной скоростью, потребуется использование некоторых из самых мощных платформ когнитивных вычислений в мире, таких как IBM Watson. Участие ученых-компьютерщиков в этом высокотехнологичном процессе приведет к трем результатам:

  • Снижение затрат на обработку информации может помочь сделать индивидуальное лечение доступным для всех.

  • Это может привести к созданию хранилища генома рака, доступного исследователям и медицинским экспертам.

  • Он сможет найти крошечную иголку в очень большом стоге сена, используя вышеупомянутый репозиторий, чтобы найти индивидуальную таргетную терапию для каждой уникальной опухоли среди бесчисленных возможных комбинаций лекарств.

Вычислительная онкология как расширение информатики в онкологии

Вычислительная биология устанавливает связь между физической наукой и онкологией. Вычислительная онкология — относительно новый термин в медицине, который начинает набирать обороты. Некоторые люди могут быть удивлены, узнав, что огромные медицинские учреждения по всему миру создают целые отделения с таким названием. Все больше и больше времени, усилий, денег и ресурсов посвящается изучению того, как рак распространяется и в конечном итоге может быть навсегда удален из организма.

В любом случае, вероятность разработки долгосрочных решений возрастает вместе с собранной информацией. Чтобы систематизировать пути роста опухоли, биологию опухоли, биоинформатику и профили опухолевых маркеров, а также построить прогностические модели лечения на основе всех этих данных, компьютерная онкология систематизирует молекулярные аспекты рака.

Компьютерные модели используются в вычислительной онкологии для получения анализа опухолевых маркеров, который полезен в точной медицине, популяционном скрининге и моделировании отдельных раковых клеток. Эти знания повышают вероятность того, что конкретные лекарства или методы лечения обеспечат долгосрочное лечение заболеваний у человека, больного раком.

На протяжении многих лет – а при определенных обстоятельствах даже сегодня – большинство людей, больных раком, получали лечение, которое имело лишь «широкое применение». Когда молекулярные маркеры отсутствуют или менее полезны для определения точных причин, почему определенные подходы к лечению эффективны для некоторых пациентов, но не для других. Чтобы лучше обслуживать пациентов, отделения компьютерной онкологии могут взять огромное количество информации о нашем геноме, которую секвенирование нового поколения (NGS) предоставило как в здоровых, так и в больных клетках, и организовать ее в базу данных.

Чтобы управлять всеми аспектами этой развивающейся области медицины, некоторые отделения ищут людей с навыками в области информатики или лабораторных исследований. Для преподавателей, ученых и врачей эта область расширяется. Работая вместе, мы можем расширить наши знания и навыки, чтобы уменьшить бремя рака во всем мире, которое, по прогнозам Международного агентства исследований, увеличится с 14,1 миллиона новых случаев в 2012 году до 23,6 миллиона случаев ежегодно к 2030 году. о Раке.

Согласно анализу Data Bridge Market Research, к 2029 году рынок диагностики рака, как ожидается, достигнет стоимости в 28,21 миллиарда долларов США при среднегодовом темпе роста 7,29% в течение прогнозируемого периода. Северная Америка доминирует на рынке диагностики рака благодаря растущему присутствию многочисленных компаний, занимающихся биотехнологиями и медицинским оборудованием, увеличению финансирования проектов исследований и разработок, а также широкому внедрению в регионе передовых технологий. Одними из крупнейших игроков на рынке диагностики рака являются компании Abbott. (США), DiagnoCure Inc. (Канада), Thermo Fisher Scientific Inc. (США), Illumina, Inc. (США), QIAGEN (Германия) и F. Hoffmann-La Roche Ltd (Швейцария).

Чтобы узнать больше об исследовании, посетите: https://www.databridgemarketresearch.com/ru/reports/global-cancer-diagnostics-market

«Microsoft — это десятилетние амбиции»

Microsoft использует информатику, включая машинное обучение и алгоритмы, для борьбы с раком. Исследователи Microsoft могут модифицировать методы, обычно используемые для моделирования вычислительных процессов, для имитации биологических, рассматривая рак как систему обработки информации.

Конечная цель компании — разработать молекулярные компьютеры, которые будут инструктировать организм бороться с раковыми клетками, как только они будут обнаружены. Сочетая это со стратегией, основанной на данных, усилия Microsoft по борьбе с болезнью сосредоточены на машинном обучении. Компания надеется использовать инструменты анализа, чтобы взять существующие биологические данные и использовать их для лучшего понимания и лечения заболевания.

Это глубокое математическое открытие, а не просто аналогия. Хотя биология и информатика могут показаться совершенно противоположными, на самом деле они имеют очень глубокие связи на самом фундаментальном уровне. Например, машинное обучение и обработка естественного языка используются для обеспечения метода сортировки доступных исследовательских данных, которые затем могут быть предоставлены онкологам для разработки наиболее эффективного и индивидуального лечения рака для пациентов.

В настоящее время доступно так много информации, что одному человеку трудно прочитать ее всю и понять. С помощью машинного обучения информация может обрабатываться быстрее и проще, чем люди.

Машинное обучение также сочетается с компьютерным зрением, чтобы помочь рентгенологам лучше понять, как развивается опухоль пациента. Исследователи разрабатывают систему, которая в будущем будет анализировать пиксели 3D-сканирования, чтобы точно определить, насколько опухоль выросла, уменьшилась или изменила форму со времени предыдущего сканирования. По словам Эндрю Филлипса, руководителя исследовательского отдела биологических вычислений Кембриджской лаборатории, ученые могут извлечь уроки из наследия Microsoft как пионера в индустрии программного обеспечения. «Мы можем программировать биологию, используя методы программирования компьютеров, которые мы открыли», — добавил он. «Это откроет гораздо больше возможностей применения и даже лучшие методы лечения».

Филлипс разрабатывает молекулярный компьютер, который можно будет вставить в клетку для отслеживания заболеваний. Реакция на борьбу с болезнью будет запущена, если датчик обнаружит, что это что-то похожее на рак. В исследованиях этого типа также будут использоваться традиционные компьютеры и перепрофилированы для использования в биотехнологиях или медицинских целях, что позволит научить организм бороться с болезнями таким же образом, как мы программируем для этого компьютеры.

Хотя исследование все еще находится на ранней стадии, Филлипс сообщил The Telegraph, что «через пять-десять лет» будет технически осуществимо имплантировать умную молекулярную систему для борьбы с болезнью таким образом.

Заключение

Исследования рака все чаще проводятся онлайн. Ученые-компьютерщики должны вступать в армию массово, поскольку в ближайшие десять лет у них могут появиться лучшие таланты в борьбе с раком. Есть надежда, что секвенирование генома раковой опухоли позволит медицинским работникам вскоре разработать индивидуальную таргетную терапию, позволяющую замедлить или остановить распространение рака.

Учитывая, как быстро информатика повлияла на жизнь пациентов и интегрировалась в исследования рака, кажется разумным предсказать, что ближайшие годы будут столь же, если не более, продуктивными. Ожидается, что в течение следующих десяти лет практикующие врачи смогут создавать подробные карты того, как развиваются и развиваются здоровые и больные ткани. Эти карты помогут им разработать новые методы диагностики и лечения рака.

Data Bridge Market Research анализирует, что объем искусственного интеллекта на рынке здравоохранения, который в 2022 году составит 9,64 миллиарда долларов США, как ожидается, достигнет 272,91 миллиарда долларов США к 2030 году при среднегодовом темпе роста 51,87% в течение прогнозируемого периода с 2023 по 2030 год. Искусственный интеллект в здравоохранении Рынок сегментирован на основе предложений, технологий, конечных пользователей и приложений. Ожидается, что Азиатско-Тихоокеанский регион будет расти самыми высокими темпами в прогнозируемый период с 2023 по 2030 год из-за увеличения правительственных инициатив по повышению осведомленности, роста медицинского туризма и растущего спроса на качественное здравоохранение в регионе.

Чтобы узнать больше об исследовании, посетите: https://www.databridgemarketresearch.com/ru/reports/global-artificial-intelligence-in-healthcare-market


Отзывы клиентов