- Недавнее исследование показало, что Европа является одним из ведущих регионов в плане инноваций в сфере энергетики.
- Одной из ключевых движущих сил перехода на низкоуглеродную энергетику являются электромобили.
Data Bridge Market Research анализирует, что рынок зарядных станций для электромобилей оценивался в 6,97 млрд долларов США в 2021 году и, как ожидается, достигнет 167,52 млрд долларов США к 2029 году, регистрируя среднегодовой темп роста в 48,80% в прогнозируемый период с 2022 по 2029 год. Растущая популярность и использование электромобилей подчеркнули необходимость развития инфраструктуры зарядки. Например, Китай, США и Германия вкладывают значительные средства в инфраструктуру зарядки электромобилей (ЭМ), а также в исследования и разработки для более быстрых и эффективных методов зарядки. ABB (Швейцария), Shell plc (Великобритания), ChargePoint (США), Tesla (США), BYD (Китай), bp Chargemaster (Великобритания), Webasto Thermo & Comfort (Германия), Schneider Electric (Франция), Blink Charging Co. (США), Groupe Renault (Франция), Phihong USA Corp. (США) и многие другие являются одними из основных игроков, работающих на рынке.
Чтобы узнать больше об исследовании, посетите: https://www.databridgemarketresearch.com/reports/global-electric-vehicle-charging-stations-market
Одним из важнейших шагов в решении проблем, вызванных климатической катастрофой, является переход на низкоуглеродную энергетику (LCE). Температурные ограничения Парижского климатического соглашения могут быть превышены, если выбросы не будут снижены, а использование более чистой энергии не будет расширено. Согласно второму исследованию по разработке технологий, необходимых для поддержки перехода на более экологичные формы энергии, которое было опубликовано Европейским патентным ведомством (ЕПВ) и Международным энергетическим агентством (МЭА), это так. ЕПВ и МЭА прочесали международные патентные базы данных, чтобы найти закономерности в инновациях, подсчитывая случаи, когда патенты были поданы в несколько ведомств, известных как международные патентные семейства, чтобы оценить достигнутый к настоящему времени прогресс (IPF). Согласно статье, «Эти патентные данные предлагают ранние индикаторы технологических достижений, которые, несомненно, повлияют на экономику, и, таким образом, могут проиллюстрировать, как инновации подпитывают энергетический переход».
Рис.1: Глобальный рост низкоуглеродной энергетики
Источник: Европейское патентное ведомство.
В период с 2014 по 2016 год наблюдалось замедление расширения IPF для зеленой энергетики. Но, согласно отчету EPO/IEA, оно снова растет. Кроме того, рост патентов, связанных с LCE, совпадает с сокращением использования ископаемого топлива.
Искусственный интеллект (ИИ), как и в любой другой отрасли, производит революцию в энергетике и коммунальном хозяйстве. Чтобы гарантировать, что электроэнергия будет поставляться тогда и там, где она нужна, с наименьшим количеством отходов, он используется для оценки спроса и контроля распределения ресурсов. Это имеет решающее значение для сектора возобновляемой энергии, поскольку возобновляемая энергия часто не подходит для длительного хранения и должна использоваться как можно скорее после ее производства. По данным Всемирного экономического форума, ИИ будет иметь решающее значение для глобального перехода на возобновляемую энергию. Повышение эффективности будет результатом более точных прогнозов спроса и предложения.
Децентрализованные модели генерации и распределения электроэнергии также заменяют централизованные. В этих моделях больше электроэнергии вырабатывается локализованными, более мелкими электросетями (например, солнечными фермами), а координация интеграции этих сетей требует сложных алгоритмов ИИ. План состоит в том, чтобы построить «интеллектуальный координирующий слой», который будет находиться между энергетической инфраструктурой и зданиями, где люди и вещи используют электричество.
В 2022 году мы можем ожидать больше инноваций от стартапов, использующих ИИ новыми способами. В качестве иллюстрации, Likewatt в Германии разработал Optiwize, сервис, который оценивает выбросы углекислого газа и потребление электроэнергии, чтобы помочь потребителям отслеживать влияние своего потребления электроэнергии в режиме реального времени и делать более обоснованный выбор в отношении поставок энергии. Чтобы повысить эффективность производства возобновляемой энергии, другие компании создают технологии для предиктивного обслуживания. Более интегрированная и электрифицированная энергетическая система с повышенным взаимодействием между секторами энергетики, транспорта, промышленности и строительства является результатом попыток декарбонизировать мировую энергетическую систему. Высокая степень децентрализации в энергетическом секторе также вызвана усилиями по декарбонизации энергоснабжения. Чтобы управлять этой все более сложной системой и оптимизировать ее для минимальных выбросов парниковых газов, потребуется значительно более высокий уровень сотрудничества и адаптивности от всех участников сектора, включая потребителей.
С потенциальными приложениями, варьирующимися от оптимизации и эффективной интеграции переменных возобновляемых источников энергии в энергосистему до поддержки проактивной и автономной системы распределения электроэнергии и открытия новых источников дохода для гибкости спроса, ИИ имеет значительный потенциал для поддержки и ускорения надежного и наименее затратного энергетического перехода. Поиск высокопроизводительных материалов, лежащих в основе новейших технологий устойчивой энергетики и хранения, может значительно выиграть от использования ИИ. Однако, несмотря на свой потенциал, ИИ иногда используется в энергетическом секторе, в основном в экспериментальных программах для проактивного обслуживания активов. Несмотря на свою эффективность, ИИ имеет гораздо более высокий потенциал для ускорения мирового энергетического перехода, чем это сейчас оценивается. Ниже приводится обсуждение того, как ИИ повлияет на энергетический сектор через широкий спектр приложений:
Рис.2: Основные области применения ИИ в энергетической отрасли
- Интеллектуальные сети. Чтобы стать «умными», сети теперь можно подключать к датчикам, инструментам анализа данных, системам хранения энергии, платформам управления энергией и другим энергетическим технологиям. Поставщики энергии могут использовать интеллектуальные сети для сбора данных о потреблении энергии с каждого сетевого устройства и создавать проекты по энергоэффективности для своих клиентов. Кроме того, это позволяет осуществлять мониторинг потребления энергии и потоков энергетическими компаниями практически в реальном времени. Затем, с помощью автоматизированных систем реагирования на спрос, которые могут отключать энергию в часы пик, энергетические компании могут минимизировать потребление энергии. В результате и домохозяйства, и поставщики энергии могут экономить энергию. Микросеть — это небольшая электрическая сеть, которая может функционировать независимо от основной сети. Системы управления микросетями используют ИИ и машинное обучение для оптимизации использования энергии и управления потоками энергии. Поскольку они могут обеспечить энергетическую безопасность во время чрезвычайных ситуаций и упростить интеграцию возобновляемых источников энергии в сеть по сравнению с традиционными энергетическими сетями, популярность микросетей растет.
- Безопасность и управление сетями. ИИ используется для управления потоками энергии внутри и между зданиями, предприятиями, аккумуляторными батареями, возобновляемыми источниками энергии, микросетями и основной электросетью с целью оптимизации энергосистем. Это уменьшает потери энергии и повышает осведомленность потребителей об использовании энергии. Несмотря на то, что непостоянные возобновляемые источники энергии, такие как ветер и солнце, становятся все популярнее. В результате эти источники энергии не всегда доступны, когда это необходимо. Поскольку энергосеть должна управлять энергией в режиме реального времени по мере ее создания, это создает проблему. Энергетические компании могут предсказывать, когда возобновляемая электроэнергия будет доступна, и соответствующим образом управлять энергосетями с помощью ИИ и машинного обучения. Роботы также используются для энергетических установок, обслуживания сетей и отслеживания производства и потребления энергии. Для ремонта трубопроводов, ветряных турбин и другой энергетической инфраструктуры можно использовать роботов. Энергетические компании могут дополнительно повысить эффективность и сократить расходы, автоматизировав эти процессы. Такая сложная система, как электрическая сеть, открыта для хакеров. Предотвращая кибератаки до их совершения, ИИ и машинное обучение могут повысить безопасность электроэнергетических инфраструктур. Для этого будет использоваться аналитика данных для поиска тенденций в энергетических данных, которые могут быть признаками кибератаки. ИИ и машинное обучение могут использоваться для реагирования на кибератаку после ее обнаружения.
- Обнаружение хищения электроэнергии. Хищение электроэнергии и мошенничество обходятся сектору энергетики и коммунальных услуг в 96 миллиардов долларов в год, при этом только в Соединенных Штатах убытки составляют до 6 миллиардов долларов. Незаконное изъятие энергии из сети известно как хищение электроэнергии. Преднамеренное искажение данных об энергии или ее использовании известно как энергетическое мошенничество. Эти аномалии могут быть автоматически обнаружены и помечены для решения энергетическими компаниями с помощью ИИ и машинного обучения. Энергетические компании могут делать это, чтобы защитить свои ресурсы, сократить потери энергии и сэкономить финансовые средства.
- Улучшение и увеличение производства. Энергетический сектор также использует ИИ и машинное обучение для увеличения производства. Например, алгоритмы машинного обучения используются нефтегазовыми корпорациями для лучшего размещения скважин и повышения производства. Эти компании могут более эффективно решать, где бурить нефть и газ, анализируя данные, полученные в результате сейсмических исследований и других источников. Это повысит энергоэффективность и приведет к созданию более чистой и эффективной энергетической системы, которой будет проще управлять поставщикам энергии.
- Хранение энергии и прогнозная аналитика. К 2030 году рынок хранения энергии, как ожидается, увеличится в 20 раз. Интеллектуальные технологии хранения энергии могут быть включены в энергосистему для повышения эффективности управления энергией. Электроэнергетические компании теперь могут поставлять энергию, когда это необходимо, даже если их текущего энергоснабжения недостаточно, используя хранение энергии для строительства виртуальных электростанций. Это снижает потребность энергетических корпораций в строительстве совершенно новых электростанций. Будущие изменения спроса на энергию можно предсказать с помощью прогнозной аналитики. Затем можно построить соответствующую инфраструктуру для планирования будущего и удовлетворения потребностей в энергии. Энергетические компании также могут предсказать, когда машина или часть оборудования, скорее всего, выйдут из строя, используя прогнозную аналитику. Это не только помогает предотвратить непредвиденные отключения, но и помогает компаниям экономить деньги, позволяя им подготовиться к замене дорогостоящих и важных энергетических активов и избежать непредвиденных задач по техническому обслуживанию.
- Взаимодействие с клиентами. Энергетический сектор начинает использовать ИИ и машинное обучение для взаимодействия с клиентами. Энергетические компании могут предоставлять клиентам информацию, адаптированную к их требованиям, используя ИИ и машинное обучение. Это подразумевает анализ данных клиентов для понимания их потребления энергии, а затем предоставление им информации о том, как изменить свои привычки использования, чтобы потреблять меньше энергии.
- Торговля энергией. Поскольку энергия должна быть предоставлена немедленно, торговля энергией отличается от торговли другими товарами. Из-за этого трейдеры энергии сталкиваются с проблемой, но есть и шанс, поскольку энергетические рынки становятся более ликвидными. Прогнозируя спрос на энергию и предоставляя трейдерам доступ к данным о ценах в реальном времени, можно использовать ИИ и машинное обучение для повышения эффективности рынка торговли энергией. Затем трейдеры энергии могут использовать эту информацию для принятия более обоснованных решений о том, когда покупать и продавать энергию. Соглашения о покупке электроэнергии (PPA), финансовый контракт между покупателями и продавцами энергии, были разработаны с использованием технологии блокчейн. Эти контракты более эффективны благодаря технологии блокчейн, поскольку она ускоряет транзакции, обходится дешевле, чем обычные платформы PPA, и основана на очень безопасной платформе.
Ожидается, что рынок разъемов для возобновляемой энергии будет расти темпами 6,10% в прогнозируемый период с 2021 по 2028 год. Отчет Data Bridge Market Research о рынке разъемов для возобновляемой энергии содержит анализ и информацию о таких факторах, как растущее внедрение возобновляемых источников энергии. Высокие затраты на установку и истощение природных ресурсов выступают в качестве рыночных ограничений для разъемов для возобновляемой энергии в вышеупомянутый прогнозный период. Растущий уровень глобального потепления и быстрый рост населения станут самой большой проблемой в росте рынка разъемов для возобновляемой энергии в вышеупомянутый прогнозный период. Рынок разъемов для возобновляемой энергии сегментирован на основе типов, источника энергии, применения и конечного пользователя. Азиатско-Тихоокеанский регион будет доминировать на рынке разъемов для возобновляемой энергии из-за усиления энергетических реформ в регионе наряду с растущим числом каналов распределения, в то время как Северная Америка, как ожидается, будет расти в прогнозируемый период 2021-2028 годов из-за преобладания благоприятной политики и растущих стандартов портфеля возобновляемых источников энергии.
Чтобы узнать больше об исследовании, посетите: https://www.databridgemarketresearch.com/reports/global-renewable-energy-connector-market
Как ИИ ускорит темпы энергетического перехода?
В новой оценке МГЭИК однозначно указано, что срочно требуются дополнительные действия для предотвращения катастрофических долгосрочных последствий изменения климата. Ископаемое топливо по-прежнему обеспечивает более 80% мировой энергии, поэтому любая инициатива должна быть сосредоточена на энергетическом секторе. К счастью, энергетическая система уже меняется; производство возобновляемой энергии быстро расширяется из-за снижения затрат и растущего интереса инвесторов. Однако времени осталось немного, а масштаб и стоимость декарбонизации всей энергетической системы по-прежнему огромны. Большая часть переходных усилий энергетической отрасли до сих пор была сосредоточена на оборудовании: новой низкоуглеродной инфраструктуре, которая заменит устаревшие углеродоемкие системы. Другой важный инструмент для перехода, цифровые технологии следующего поколения, в частности искусственный интеллект, получили очень мало внимания и финансирования (ИИ). Эти мощные технологии обладают потенциалом для ускорения энергетического перехода, поскольку будут внедряться в масштабах, превосходящих новые аппаратные решения. Три основные тенденции обуславливают потенциал ИИ для ускорения энергетического перехода:
- Исторические процессы декарбонизации только начинаются в энергоемких отраслях, включая энергетику, транспорт, тяжелую промышленность и строительство, благодаря растущему общественному давлению в пользу скорейшего сокращения выбросов CO2. Эти преобразования имеют колоссальный масштаб. По данным BloombergNEF, для достижения нулевых выбросов к 2050 году только в энергетическом секторе потребуется от 92 до 173 триллионов долларов инвестиций в инфраструктуру. Таким образом, даже скромное увеличение чистой энергии и гибкости, эффективности или мощности низкоуглеродной промышленности может привести к триллионам долларов стоимости и экономии.
- Энергетический сектор превращается в главный столп мирового энергоснабжения, поскольку электричество поддерживает все больше отраслей и приложений. Чтобы гарантировать, что энергетические сети могут управляться безопасно и надежно, увеличение использования возобновляемых источников энергии будет означать, что больше энергии будет поставляться спорадическими источниками (такими как солнечная и ветровая энергия), что увеличивает необходимость в прогнозировании, координации и гибком потреблении.
- Быстрое расширение распределенной генерации электроэнергии, распределенного хранения и улучшенных возможностей реагирования на спрос обусловлено переходом на низкоуглеродные энергетические системы. Эти возможности должны быть скоординированы и интегрированы посредством более сетевых, транзакционных энергосетей.
Энергетическая система и энергоемкие секторы сталкиваются с огромными стратегическими и операционными препятствиями в навигации по этим тенденциям. ИИ может помочь заинтересованным сторонам энергетической системы в выявлении закономерностей и понимания данных, извлечении уроков из опыта и улучшении производительности системы с течением времени, а также в прогнозировании и моделировании потенциальных результатов сложных, многомерных ситуаций путем создания интеллектуального координационного слоя по производству, передаче и использованию энергии. Во многих областях энергетического перехода уже наблюдаются ощутимые преимущества от ИИ, включая прогнозирование возобновляемой энергии, работу и оптимизацию сетей, распределенные энергетические активы и координацию управления спросом, а также инновации и открытия в области материалов. Хотя использование ИИ в энергетическом секторе до сих пор было многообещающим, не было особых инноваций или широкого признания. Это дает фантастический шанс ускорить переход к будущей энергетической системе, которая нам нужна — без выбросов, чрезвычайно эффективна и связана. Способность ИИ ускорить глобальный энергетический переход намного больше, чем считалось ранее, но этот потенциал может быть реализован только в том случае, если будут увеличены инновации, внедрение и сотрудничество в области ИИ в масштабах всей отрасли.
Почему ИИ является ключом к устойчивости сетей возобновляемой энергии?
- Для управления децентрализованными сетями в ходе глобального перехода на возобновляемые источники энергии потребуется технология искусственного интеллекта (ИИ).
- ИИ может оптимизировать использование и хранение энергии, чтобы снизить затраты и сбалансировать потребности в поставках и спросе на электроэнергию в режиме реального времени.
- Для обеспечения надежных источников электроэнергии, продвижения инноваций и демократизации доступа потребуется управление технологиями.
Чтобы решить сегодняшние проблемы с использованием технологий прошлого, были сделаны призывы к государственным расходам на сетевую инфраструктуру для модернизации длинных линий электропередач от централизованного источника питания. Превосходная, более прогрессивная замена уже существует — искусственный интеллект (ИИ), который использует распределенные возобновляемые источники энергии. Таким образом, ИИ является ключом к продвижению возобновляемой энергии двумя способами:
Рис.3: Помощь ИИ в продвижении возобновляемой энергии
- Повышение сложности в возобновляемой энергетике. Больше энергии будет вырабатываться из распределенных возобновляемых источников по мере того, как мир становится более электрифицированным. Рассмотрим батареи, частные солнечные панели, ветряные электростанции и микросети. Даже если они выгодны для устойчивости, они усложнят энергетическую инфраструктуру во всем мире. Необходимо будет тонко балансировать, чтобы сопоставить спрос и предложение, не поставив сеть на колени в течение следующих 10–15 лет в результате растущего внедрения электромобилей, электрификации систем отопления и распространения распределенных энергетических ресурсов (DER), таких как ветряные турбины и солнечные панели. Используйте Австралию в качестве иллюстрации. Ожидается, что к 2030 и 2050 годам 30% и 60% жилых, коммерческих и промышленных структур страны будут использовать солнечную энергию. Аналогичные ситуации происходят во всем мире, поскольку все больше коммерческих, государственных и бытовых потребителей производят собственную энергию с помощью солнечных панелей, хранят ее в аккумуляторах для использования в электромобилях или возвращают ее в сеть. Наши прогнозы показывают, что к 2030 году в Европе будет 89 миллионов устройств хранения энергии в сети, что выше текущей оценки в 36 миллионов (см. рисунок ниже). Электрические сети могут стать хаотичными, если миллионы отдельных гаджетов будут отправлять и загружать электроэнергию. Другими словами, коммунальным службам придется изменить свои бизнес-модели, поскольку зависимость от одной коммунальной службы для производства и передачи электроэнергии уменьшается. Скоро они не будут единственным источником энергии; вместо этого им придется поддерживать баланс сети, перенося электроны из различных источников и систем хранения, чтобы эффективно поставлять энергию туда, где она нужна, каждую секунду.
- ИИ для балансировки миллионов сетей. Децентрализованные источники энергии могут передавать любое дополнительное электричество, которое они генерируют, в сеть с помощью программного обеспечения ИИ, а коммунальные службы могут направлять это электричество туда, где оно требуется. Подобно накопителям энергии, которые могут хранить дополнительную энергию, когда спрос в домах, офисах, автомобилях и других сооружениях низок, ИИ может использовать эту энергию, когда генерация недостаточна или невозможна. В этой системе много движущихся частей; таким образом, для поддержания стабильности сети необходимы координация, прогнозирование и оптимизация. Коммунальная служба подобна дирижеру, который поддерживает оркестр в такт, поскольку ИИ сочиняет симфонию в реальном времени, если представить DER как отдельных музыкантов. В результате система на основе ИИ может преобразовать игру. Сеть, которая становится более устойчивой и гибкой при возникновении непредвиденных событий, является результатом перехода от системы с тяжелой инфраструктурой к системе, сосредоточенной на ИИ. Прогнозирование и управление теперь возможны за секунды, а не за дни.
Что касается децентрализованных энергетических ресурсов, коммунальные службы, лица, принимающие решения, и регулирующие органы должны начать рассматривать свои соответствующие роли. Управление и координация лоскутного одеяла распределенных производителей энергии будут иметь важное значение. Коммунальные службы могут взять на себя лидерство в этой ситуации, поскольку они имеют дело с уменьшающимся числом клиентов, покупающих электроэнергию, поскольку все больше домов и предприятий начинают производить свою собственную энергию благодаря солнечным панелям на крышах и аналогичным технологиям. Нельзя терять времени, потому что изменение климата продолжит приносить в мир более экстремальные погодные условия. Текущее экономическое положение и затянувшиеся политические дискуссии, подобные той, что ожидается в США, вероятно, потянут необходимые инвестиции. Лучший курс действий — не инвестировать в централизованные сети с их сетью длинных кабелей и трансформаторов; вместо этого правительства должны разработать планы для сети, в которой сообщества и здания будут производить свою собственную электроэнергию, которая затем будет управляться в режиме реального времени с помощью программного обеспечения. Политикам следует рассмотреть государственное финансирование производства возобновляемой энергии, а также стимулы для более рассредоточенной генерации энергии в частной промышленности и домах. А чтобы гарантировать совместимость, прозрачность и справедливый доступ во всей энергетической среде, нам необходимо одобренное на глобальном уровне управление программным обеспечением ИИ.
Заключение
Проактивный и кооперативный подход к управлению технологиями, связанными с ИИ, будет выгоден для энергетического сектора. Предстоящие годы будут важны для продвижения инноваций в этой области и демократизации доступа к инновационным низкоуглеродным технологиям во всей энергетической системе. Если они не были приняты ранее, отрасль должна внедрить общие стандарты данных в качестве условия для этого и цифровизации в целом. Расширение сотрудничества между субъектами энергетической отрасли может принять форму совместных проектов НИОКР, обмена передовыми методами внедрения концепций ИИ и представления примеров использования. Сотрудничество также может способствовать укреплению доверия между создателями технологий ИИ, потребителями, регулирующими органами и другими заинтересованными сторонами, взаимодействующими с системами ИИ. Регуляторы и операторы сетей должны учитывать потенциал различных цифровых технологий (таких как машинное обучение, квантовые вычисления, технология блокчейн и другие) для улучшения способа эксплуатации сетей, поскольку управление и эксплуатация сетей становятся более сложными, особенно на уровне распределительных сетей. Необходимость переосмысления управления сетями и возможность разработки новых и более децентрализованных проектов для доступа к сетям, эксплуатации и принятия управленческих решений возникают по мере того, как энергосистема декарбонизируется и децентрализуется. Традиционный метод ручного управления и контроля (с центральным системным оператором) следует заменить на технологически децентрализованное принятие решений, что позволит быстрее принимать решения и автоматически добавлять в сеть меньшие распределенные активы (используя, например, блокчейн, цифровую идентификацию и смарт-контракты). Правительства могли бы приказать или предложить стимулы государственным и отраслевым органам для управления и финансирования центральных баз данных промышленных данных в рамках этого справедливого распространения данных. Эти наборы данных позволят обучать алгоритмы ИИ и, возможно, уменьшат предвзятость алгоритмов, которая часто возникает из-за низкого качества или разреженных данных.
Рост спроса на энергоэффективные и долговечные системы привел к росту спроса на системы сбора энергии. Data Bridge Market Research анализирует, что рынок систем сбора энергии будет демонстрировать среднегодовой темп роста (CAGR) 10,04% в прогнозируемый период 2021-2028 гг. Это означает, что текущая рыночная стоимость вырастет до 1042,5 млн долларов США к 2028 году. Система сбора энергии — это технология, которая преобразует энергию из окружающей среды в пригодную для использования электроэнергию. Эта система извлекает небольшие количества энергии из окружающей среды, которые в противном случае были бы потеряны в виде тепла, света, звука или вибрации. Северная Америка доминирует на рынке благодаря более широкому принятию и применению систем сбора энергии в зданиях и бытовых приборах. Рост в промышленном и автомобильном секторах также подпитывал рост рынка в странах этого региона. США вносят здесь наибольший вклад.
Чтобы узнать больше об исследовании, посетите: https://www.databridgemarketresearch.com/reports/global-energy-harvesting-system-market