Статьи

14 декабря 2022 г.

Трансформация энергетической отрасли благодаря ИИ

  • Недавнее исследование показывает, что Европа является одним из ведущих регионов по инновациям в сфере энергетики.
  • Одной из ключевых движущих сил перехода на низкоуглеродную энергетику являются электромобили.

Согласно анализу Data Bridge Market Research, рынок зарядных станций для электромобилей оценивался в 6,97 млрд долларов США в 2021 году и, как ожидается, достигнет 167,52 млрд долларов США к 2029 году, при этом среднегодовой темп роста составит 48,80% в течение прогнозируемого периода с 2022 по 2029 год. Растущая популярность и использование электромобилей подчеркнуло необходимость развития зарядной инфраструктуры. Например, Китай, США и Германия тратят большие средства на инфраструктуру зарядки электромобилей (EV), а также на исследования и разработки для более быстрых и эффективных методов зарядки. ABB (Швейцария), Shell plc (Великобритания), ChargePoint (США), Tesla (США), BYD (Китай), BP Chargemaster (Великобритания), Webasto Thermo & Comfort (Германия), Schneider Electric (Франция), Blink Charging Co. (США), Groupe Renault (Франция), Phihong USA Corp. (США) и многие другие являются одними из крупнейших игроков, работающих на рынке.

Чтобы узнать больше об исследовании, посетите: https://www.databridgemarketresearch.com/ru/reports/global-electric-vehicle-charging-stations-market

Одним из существенных шагов в решении проблем, вызванных климатической катастрофой, является переход на низкоуглеродную энергетику (НЭК). Температурные пределы Парижского климатического соглашения могут быть превышены, если выбросы не будут снижены, а использование более чистой энергии не будет расширено. Согласно второму исследованию о разработке технологий, необходимых для поддержки перехода на более экологичные виды энергии, опубликованному Европейским патентным ведомством (ЕПВ) и Международным энергетическим агентством (МЭА), это действительно так. ЕПВ и МЭА прочесали международные патентные базы данных, чтобы найти закономерности в инновациях, подсчитывая случаи, когда патенты были поданы в несколько ведомств, известных как международные патентные семейства, чтобы оценить достигнутый прогресс (IPF). Согласно статье, «эти патентные данные предлагают ранние индикаторы технологических достижений, которые наверняка повлияют на экономику и, таким образом, могут проиллюстрировать, как инновации способствуют энергетическому переходу».

Growth of Low Carbon Energy

Рис.1: Глобальный рост низкоуглеродной энергетики

Источник: Европейское патентное ведомство.

В период с 2014 по 2016 год наблюдалось замедление расширения ОПЗ для зеленой энергетики. Но, согласно отчету ЕПВ/МЭА, оно вновь растет. Кроме того, рост количества патентов, связанных с LCE, совпадает с сокращением использования ископаемого топлива.

Искусственный интеллект (ИИ), как и в любой отрасли, производит революцию в энергетике и коммунальном хозяйстве. Чтобы гарантировать подачу электроэнергии тогда и там, где она необходима, с наименьшими потерями, она используется для оценки спроса и контроля распределения ресурсов. Это имеет решающее значение для сектора возобновляемой энергетики, поскольку возобновляемая энергия часто не пригодна для длительного хранения и ее необходимо использовать как можно скорее после ее производства. По мнению Всемирного экономического форума, ИИ будет иметь решающее значение для глобального перехода на возобновляемые источники энергии. Повышение эффективности будет результатом более точных прогнозов спроса и предложения.

Децентрализованные модели производства и распределения электроэнергии также заменяют централизованные. В этих моделях больше энергии производится локализованными, меньшими энергосетями (такими как солнечные электростанции), и координация интеграции этих сетей требует сложных алгоритмов искусственного интеллекта. План состоит в том, чтобы построить «интеллектуальный координирующий слой», который будет лежать между энергетической инфраструктурой и зданиями, где люди и предметы используют электричество.

В 2022 году мы можем ожидать большего количества инноваций от стартапов, использующих ИИ новыми способами. В качестве иллюстрации компания Likewatt в Германии разработала Optiwize — сервис, который оценивает выбросы углекислого газа и энергопотребление, чтобы помочь потребителям отслеживать последствия энергопотребления в режиме реального времени и делать более осознанный выбор в отношении источников энергии. Чтобы повысить эффективность производства возобновляемой энергии, другие предприятия создают технологии профилактического обслуживания. Более интегрированная и электрифицированная энергетическая система с усилением взаимодействия между энергетическим, транспортным, промышленным и строительным секторами является результатом попыток декарбонизации мировой энергетической системы. Высокая степень децентрализации в энергетическом секторе также вызвана усилиями по декарбонизации энергоснабжения. Чтобы управлять этой все более сложной системой и оптимизировать ее для достижения самых низких выбросов парниковых газов, потребуется значительно более высокий уровень сотрудничества и адаптивности со стороны всех участников сектора, включая потребителей.

Благодаря потенциальным приложениям, варьирующимся от оптимизации и эффективной интеграции переменных возобновляемых источников энергии в энергосистему до поддержки проактивной и автономной системы распределения электроэнергии и открытия новых потоков доходов для обеспечения гибкости со стороны спроса, ИИ имеет значительный потенциал для поддержки и ускорения надежный и наименее затратный энергетический переход. Поиск высокоэффективных материалов, лежащих в основе новейших технологий устойчивой энергетики и хранения энергии, может значительно выиграть от использования ИИ. Однако, несмотря на свой потенциал, ИИ время от времени используется в энергетическом секторе, в основном в экспериментальных программах превентивного обслуживания активов. Несмотря на свою эффективность, ИИ имеет гораздо более высокий потенциал для ускорения глобального энергетического перехода, чем сейчас считается. Ниже приводится обсуждение того, как ИИ будет влиять на энергетический сектор посредством широкого спектра приложений:

Top Applications of AI in the Energy Industry

Рис.2: Основные применения ИИ в энергетической отрасли

  • Умные сети- Чтобы стать «умными», сети теперь можно подключить к датчикам, инструментам анализа данных, системам хранения энергии, платформам управления энергопотреблением и другим энергетическим технологиям. Поставщики энергии могут использовать интеллектуальные сети для сбора данных о потреблении энергии с каждого сетевого устройства и создавать проекты энергоэффективности для своих клиентов. Кроме того, это позволяет практически в реальном времени отслеживать использование и потоки энергии энергетическими компаниями. Затем с помощью автоматизированных систем реагирования на спрос, которые могут отключать энергию в часы пик, энергетические компании смогут минимизировать потребление энергии. Как следствие, как домохозяйства, так и поставщики энергии могут экономить энергию. Микросеть — это небольшая электросеть, которая может функционировать независимо от основной сети. Искусственный интеллект и машинное обучение используются системами управления микросетями для оптимизации использования энергии и управления потоками энергии. Поскольку они могут обеспечить энергетическую безопасность во время чрезвычайных ситуаций и упростить интеграцию возобновляемых источников энергии в сеть, чем традиционные энергетические сети, популярность микросетей растет.
  • Сетевая безопасность и управление- ИИ используется для управления потоками энергии внутри и между зданиями, предприятиями, аккумуляторными батареями, возобновляемыми источниками энергии, микросетями и основной энергосистемой с целью оптимизации энергетических систем. Это уменьшает потери энергии и одновременно повышает осведомленность потребителей об использовании энергии. Несмотря на то, что прерывистые возобновляемые источники энергии, такие как ветер и солнечная энергия, становятся все более популярными. В результате эти источники энергии не всегда доступны, когда они необходимы. Поскольку энергетическая сеть должна управлять энергией в режиме реального времени по мере ее создания, это представляет собой проблему. Энергетические компании могут прогнозировать, когда будет доступна возобновляемая электроэнергия, и соответствующим образом управлять энергосетями с помощью искусственного интеллекта и машинного обучения. Роботы также используются для энергетических установок, обслуживания сетей и отслеживания производства и потребления энергии. Для ремонта трубопроводов, ветряных турбин и другой энергетической инфраструктуры можно использовать роботов. Энергетические компании могут еще больше повысить эффективность и сократить расходы за счет автоматизации этих процессов. Сложная система, такая как электрическая сеть, открыта для хакеров. Предотвращая кибератаки до того, как они произойдут, ИИ и машинное обучение могут повысить безопасность электроэнергетической инфраструктуры. Для этого будет использоваться анализ данных для выявления тенденций в энергетических данных, которые могут быть признаками кибератаки. Искусственный интеллект и машинное обучение можно использовать для реагирования на кибератаку после ее обнаружения.
  • Обнаружение кражи электроэнергии- Кража и мошенничество с электроэнергией обходятся энергетическому и коммунальному сектору в 96 миллиардов долларов ежегодно, при этом только в Соединенных Штатах убытки достигают 6 миллиардов долларов. Незаконное получение энергии из сети известно как кража электроэнергии. Преднамеренное искажение энергетических данных или энергопотребления известно как энергетическое мошенничество. Эти аномалии могут автоматически обнаруживаться и помечаться для устранения энергетическими компаниями с использованием искусственного интеллекта и машинного обучения. Энергетические компании могут сделать это, чтобы защитить свои ресурсы, сократить потери энергии и сэкономить деньги.
  • Улучшение и увеличение производства- Энергетический сектор также использует искусственный интеллект и машинное обучение для увеличения производства. Например, алгоритмы машинного обучения используются нефтегазовыми корпорациями для улучшения расположения скважин и увеличения добычи. Эти предприятия могут решить, где более эффективно бурить нефть и газ, анализируя данные, полученные в результате сейсмических исследований и других источников. Это повысит энергоэффективность и приведет к созданию более чистой и эффективной энергетической системы, которой поставщикам энергии будет проще управлять.
  • Хранение энергии и прогнозная аналитика- Ожидается, что к 2030 году рынок хранения энергии увеличится в 20 раз. Технологии интеллектуального хранения энергии могут быть включены в энергосистему для повышения эффективности управления энергопотреблением. Электроэнергетические предприятия теперь могут поставлять энергию, когда она необходима, даже если их текущего энергоснабжения недостаточно, используя накопители энергии для строительства виртуальных электростанций. Это снижает потребность энергетических корпораций в строительстве новых электростанций. Будущие изменения спроса на энергию можно предсказать с помощью прогнозной аналитики. Затем может быть построена соответствующая инфраструктура для планирования будущего и обеспечения энергетических потребностей. Энергетические предприятия также могут прогнозировать, когда машина или часть оборудования, скорее всего, выйдет из строя, используя прогнозную аналитику. Это не только помогает предотвратить непредвиденные отключения электроэнергии, но также помогает предприятиям экономить деньги, позволяя им подготовиться к замене дорогостоящих и важных энергетических активов и избежать непредвиденных задач по техническому обслуживанию.
  • Привлечения клиентов- Энергетический сектор начинает использовать искусственный интеллект и машинное обучение для взаимодействия с клиентами. Энергетические компании могут предоставлять клиентам информацию, соответствующую их требованиям, используя искусственный интеллект и машинное обучение. Это влечет за собой анализ данных клиентов, чтобы понять их энергопотребление, а затем предоставление им информации о том, как изменить свои привычки использования, чтобы потреблять меньше энергии.
  • Торговля энергией- Поскольку энергия должна быть предоставлена ​​сразу, торговля энергией отличается от других товаров. Из-за этого трейдеры энергоресурсов сталкиваются с трудностями, но есть и шанс, поскольку энергетические рынки становятся более ликвидными. Прогнозируя спрос на энергию и предоставляя трейдерам доступ к данным о ценах в режиме реального времени, искусственный интеллект и машинное обучение можно использовать для повышения эффективности рынка торговли энергией. Трейдеры энергии могут затем использовать эту информацию, чтобы сделать более осознанный выбор в отношении того, когда покупать и продавать энергию. Соглашения о покупке электроэнергии (PPA) — финансовый контракт между покупателями и продавцами энергии — были разработаны с использованием технологии блокчейн. Эти контракты более эффективны благодаря технологии блокчейна, поскольку она ускоряет транзакции, дешевле в использовании, чем обычные платформы PPA, и основана на очень безопасной платформе.

Ожидается, что рынок разъемов для возобновляемых источников энергии будет расти темпами 6,10% в прогнозируемый период с 2021 по 2028 год. Отчет Data Bridge Market Research о рынке разъемов для возобновляемых источников энергии содержит анализ и понимание таких факторов, как растущее внедрение возобновляемых источников энергии. Высокие затраты на установку и истощение природных ресурсов действуют как рыночные ограничения для соединителей возобновляемой энергии в вышеупомянутый прогнозируемый период. Растущий уровень глобального потепления и быстрый рост населения станут самой большой проблемой для роста рынка разъемов для возобновляемой энергии в вышеупомянутый прогнозируемый период. Рынок разъемов для возобновляемых источников энергии сегментирован по типам, источникам энергии, применению и конечному пользователю. Азиатско-Тихоокеанский регион будет доминировать на рынке разъемов возобновляемой энергии из-за усиления энергетических реформ в регионе, а также растущего числа каналов распределения, в то время как Северная Америка будет ожидать роста в прогнозируемом периоде 2021-2028 годов из-за преобладания благоприятной политики и растущие стандарты портфеля возобновляемых источников энергии.

Чтобы узнать больше об исследовании, посетите: https://www.databridgemarketresearch.com/ru/reports/global-renewable-energy-connector-market

Как ИИ ускорит темпы энергетического перехода?

В новой оценке МГЭИК недвусмысленно заявлено, что необходимы дополнительные действия для предотвращения катастрофических долгосрочных климатических последствий. Ископаемое топливо по-прежнему обеспечивает более 80% мировой энергии, поэтому любая инициатива должна быть сосредоточена на энергетическом секторе. К счастью, энергетическая система уже меняется; Производство возобновляемой энергии быстро расширяется из-за снижения затрат и роста интереса инвесторов. Однако времени осталось не так уж много, а масштабы и стоимость декарбонизации всей энергосистемы по-прежнему огромны. До сих пор большая часть переходных усилий энергетической отрасли была сосредоточена на оборудовании: новой низкоуглеродной инфраструктуре, которая заменит устаревшие углеродоемкие системы. Еще один важнейший инструмент перемен – цифровые технологии следующего поколения, особенно искусственный интеллект, – получили очень мало внимания и финансирования (ИИ). Эти мощные технологии могут ускорить энергетический переход, поскольку внедряются быстрее, чем новые аппаратные решения. Три основные тенденции определяют потенциал ИИ для ускорения энергетического перехода:

  • Исторические процессы декарбонизации только начинаются в энергоемких отраслях, включая энергетику, транспорт, тяжелую промышленность и строительство, благодаря растущему общественному давлению с требованием быстрого сокращения выбросов CO2. Эти преобразования имеют масштабные масштабы. По данным BloombergNEF, только в энергетическом секторе для достижения нулевых выбросов к 2050 году потребуются инвестиции в инфраструктуру от 92 до 173 триллионов долларов. Таким образом, даже скромное увеличение экологически чистой энергии и низкоуглеродистой промышленной гибкости, эффективности или мощности может привести к экономии в триллионы долларов.
  • Энергетический сектор превращается в главную опору мирового энергоснабжения, поскольку электричество поддерживает все больше отраслей и приложений. Чтобы обеспечить безопасное и надежное управление электросетями, увеличение использования возобновляемых источников энергии будет означать, что больше энергии будет поставляться из спорадических источников (таких как солнечная и ветровая энергия), что увеличивает необходимость прогнозирования, координации и гибкого потребления.
  • Быстрое расширение распределенного производства электроэнергии, распределенного хранения и улучшения возможностей реагирования на спрос обусловлено переходом к низкоуглеродным энергетическим системам. Эти возможности должны быть скоординированы и интегрированы посредством более сетевых, транзакционных энергетических сетей.

Энергетическая система и энергоемкие отрасли сталкиваются с огромными стратегическими и оперативными препятствиями в управлении этими тенденциями. ИИ может помочь заинтересованным сторонам энергетической системы выявлять закономерности и понимание данных, учиться на основе опыта и улучшать производительность системы с течением времени, а также прогнозировать и моделировать потенциальные результаты сложных, многомерных ситуаций путем создания интеллектуального уровня координации между производством, передачей и использованием. энергии. Во многих областях энергетического перехода уже наблюдаются ощутимые преимущества от ИИ, включая прогнозирование возобновляемых источников энергии, работу и оптимизацию сетей, распределенные энергетические активы и координацию управления спросом, а также инновации и открытия в области материалов. Хотя использование ИИ в энергетическом секторе до сих пор показывало многообещающие результаты, инноваций и широкого признания не было. Это дает фантастический шанс ускорить переход к будущей энергетической системе, которая нам нужна – без выбросов, чрезвычайно эффективной и взаимосвязанной. Способность ИИ ускорить глобальный энергетический переход намного выше, чем считалось ранее, но этот потенциал может быть реализован только в том случае, если будут расширяться масштабы инноваций, внедрения и сотрудничества в области ИИ в масштабах всей отрасли.

Как ИИ играет ключевую роль в обеспечении устойчивости сетей возобновляемой энергетики?

  • Для управления децентрализованными сетями во время глобального перехода на возобновляемые источники энергии потребуются технологии искусственного интеллекта (ИИ).
  • ИИ может оптимизировать использование и хранение энергии, чтобы снизить затраты и сбалансировать потребности в поставках и спросе на электроэнергию в режиме реального времени.
  • Управление технологиями потребуется для обеспечения устойчивых источников электроэнергии, продвижения инноваций и демократизации доступа.

Чтобы решить сегодняшние проблемы с использованием технологий прошлого, прозвучали призывы к государственным расходам на сетевую инфраструктуру для модернизации длинных линий электропередачи от централизованного источника электроснабжения. Уже существует более совершенная и прогрессивная замена — искусственный интеллект (ИИ), который использует распределенные возобновляемые источники энергии. Таким образом, ИИ является ключом к продвижению возобновляемых источников энергии по двум направлениям:

AI's Assistance in Promoting Renewable Energy

Рис.3: Помощь ИИ в продвижении возобновляемых источников энергии

  • Повышенная сложность возобновляемой энергетики. По мере того, как мир становится более электрифицированным, больше энергии будет производиться из распределенных возобновляемых источников. Рассмотрим батареи, частные солнечные панели, ветряные электростанции и микросети. Даже если они выгодны с точки зрения устойчивости, они усложнят энергетическую инфраструктуру во всем мире. Потребуется деликатный баланс, чтобы согласовать спрос и предложение, не ставя энергосистему на колени в течение следующих 10–15 лет в результате растущего внедрения электромобилей, электрификации систем отопления и распространения распределенных энергетических ресурсов. (DER), такие как ветряные турбины и солнечные панели. Используйте Австралию в качестве иллюстрации. Ожидается, что к 2030 и 2050 годам 30% и 60% жилых, коммерческих и промышленных построек страны будут использовать солнечную энергию. Подобные ситуации происходят во всем мире, поскольку все больше коммерческих, правительственных и бытовых потребителей производят собственную энергию с помощью солнечных батарей, хранят ее в батареях для использования в электромобилях или возвращают в сеть. Наши прогнозы показывают, что к 2030 году в сети Европы будет 89 миллионов устройств хранения энергии по сравнению с нынешней оценкой в ​​36 миллионов (см. рисунок ниже). Электрические сети могут стать хаотичными, если миллионы отдельных устройств будут передавать и скачивать электроэнергию. Другими словами, коммунальным предприятиям придется изменить свои бизнес-модели, поскольку зависимость от одного предприятия по производству и передаче электроэнергии сокращается. Вскоре они не будут единственным источником энергии; вместо этого им придется поддерживать баланс сети, передавая электроны из различных источников и систем хранения, чтобы каждую секунду эффективно поставлять энергию туда, где она необходима.
  • ИИ для балансировки миллионов сеток Децентрализованные источники энергии могут передавать любую дополнительную электроэнергию, которую они производят, в сеть с помощью программного обеспечения искусственного интеллекта, а коммунальные предприятия могут направлять эту электроэнергию туда, где она требуется. Подобно накопителям энергии, которые могут сохранять дополнительную энергию, когда спрос в домах, офисах, автомобилях и других сооружениях низкий, ИИ может использовать эту энергию, когда ее выработка недостаточна или невозможна. В этой системе много движущихся частей; таким образом, для поддержания стабильности сети необходимы координация, прогнозирование и оптимизация. Утилита подобна дирижеру, поддерживающему оркестр во времени, пока ИИ сочиняет симфонию в реальном времени, если представить DER как отдельных музыкантов. В результате система на базе искусственного интеллекта может изменить игру. Сеть, которая становится более устойчивой и гибкой при возникновении непредвиденных событий, является результатом перехода от системы с тяжелой инфраструктурой к системе, ориентированной на искусственный интеллект. Прогнозирование и контроль теперь возможны за секунды, а не за дни.

Что касается децентрализованных энергетических ресурсов, коммунальные предприятия, лица, принимающие решения, и регулирующие органы должны начать рассматривать свои соответствующие роли. Управление и координация деятельности производителей распределенной энергии будут иметь важное значение. Коммунальные предприятия могут взять на себя инициативу в этой ситуации, поскольку они сталкиваются с уменьшением числа клиентов, покупающих электроэнергию, поскольку все больше домов и предприятий начинают производить собственную энергию благодаря солнечным панелям на крышах и аналогичным технологиям. Нельзя терять времени, потому что изменение климата будет продолжать приносить в мир еще больше экстремальных погодных явлений. Текущее экономическое состояние и затяжные политические дискуссии, подобные ожидаемым в США, вероятно, приведут к сокращению необходимых инвестиций. Лучший вариант действий — не инвестировать в централизованные сети с их сетью длинных кабелей и трансформаторов; скорее, правительствам следует разработать планы создания сети, в которой сообщества и здания будут производить собственную электроэнергию, которой затем управляют в режиме реального времени с помощью программного обеспечения. Политики должны учитывать государственное финансирование производства возобновляемой энергии, а также стимулы для более рассредоточенного производства энергии в частной промышленности и домах. И чтобы гарантировать функциональную совместимость, прозрачность и справедливый доступ во всей энергетической среде, нам необходимо глобально одобренное управление программным обеспечением искусственного интеллекта.

Заключение

Проактивный и совместный подход к управлению технологиями, связанными с искусственным интеллектом, был бы выгоден для энергетического сектора. Предстоящие годы будут важны для продвижения инноваций в этой области и демократизации доступа к инновационным низкоуглеродным технологиям во всей энергетической системе. Если это не было принято ранее, отрасль должна внедрить единые стандарты данных в качестве условия для этого и перехода на цифровые технологии в целом. Расширение сотрудничества между участниками энергетической отрасли может принять форму совместных научно-исследовательских проектов, обмена передовыми методами реализации концепций искусственного интеллекта и представления примеров использования. Сотрудничество также может способствовать укреплению доверия между создателями технологий искусственного интеллекта, потребителями, регулирующими органами и другими заинтересованными сторонами, взаимодействующими с системами искусственного интеллекта. Регуляторы и операторы сетей должны учитывать потенциал различных цифровых технологий (таких как машинное обучение, квантовые вычисления, технология блокчейна и др.) для улучшения способов эксплуатации сетей, поскольку управление и эксплуатация сетей становятся более сложными, особенно на уровень распределительной сети. По мере декарбонизации и децентрализации энергетической системы возникает необходимость переосмысления управления энергосистемой и возможность разработки новых, более децентрализованных проектов доступа к сети, ее эксплуатации и принятия решений по управлению. Традиционный метод ручного управления и контроля (с участием центрального системного оператора) должен быть заменен технологическим децентрализованным принятием решений, обеспечивающим более быстрое принятие решений и автоматическое добавление небольших распределенных активов в сеть (с использованием, например, блокчейна). , цифровая идентификация и смарт-контракты). Правительства могли бы распорядиться или предложить стимулы государственным и отраслевым органам для управления и финансирования центральных баз данных промышленных данных в рамках такого справедливого распространения данных. Эти наборы данных позволят обучать алгоритмы ИИ и, возможно, уменьшат предвзятость алгоритмов, которая часто возникает из-за низкого качества или скудности данных.

Рост спроса на энергоэффективные и долговечные системы привел к росту спроса на системы сбора энергии. Исследование рынка Data Bridge показывает, что рынок систем сбора энергии будет демонстрировать среднегодовой темп роста 10,04% в прогнозируемый период 2021-2028 годов. Это означает, что к 2028 году текущая рыночная стоимость вырастет до 1 042,5 миллиона долларов США. Система сбора энергии — это технология, которая преобразует энергию из окружающей среды в полезную электроэнергию. Эта система извлекает небольшое количество энергии из окружающей среды, которая в противном случае была бы потеряна в виде тепла, света, звука или вибрации. Северная Америка доминирует на рынке благодаря более широкому внедрению и применению систем сбора энергии в зданиях и бытовой технике. Рост промышленного и автомобильного секторов также способствовал росту рынка в странах этого региона. США вносят здесь наибольший вклад.

Чтобы узнать больше об исследовании, посетите: https://www.databridgemarketresearch.com/ru/reports/global-energy-harvesting-system-market


Отзывы клиентов