개요
자율주행차는 이동성 분야에서 가장 중요한 혁신이며 사람들의 이동 방식을 변화시킬 것입니다. 자율주행차의 채택은 사람들의 출퇴근 방식에 혁명을 일으켜 도로 안전을 향상시키고 교통 혼잡을 줄이며 탄소 배출을 낮출 것입니다. 최근 기술의 급속한 발전으로 자율주행차의 현실화가 가능해졌습니다. 이 기사의 목적은 자율주행차의 이동성 변화가 사회에 어떤 영향을 미칠지, 그리고 원활하고 효율적인 교통 시스템을 위해 어떤 조치를 취해야 하는지 살펴보는 것입니다.
자율주행차의 가장 중요한 초점은 안전이며, 이 기술은 이미 인간이 운전하는 차량보다 훨씬 안전한 것으로 입증되었습니다. 자율주행차는 교통사고의 주요 원인인 사람의 실수 가능성을 없애기 때문에 더욱 안전합니다. 또한 자율주행차에는 도로 위의 다른 차량, 보행자, 장애물을 감지할 수 있는 다양한 센서와 카메라가 탑재되어 있어 차량이 그에 따라 반응할 수 있습니다. 또한, 자율주행차를 구현하면 음주운전, 과속, 난폭운전으로 인한 사고가 줄어들어 모두가 안전한 도로를 만들 수 있습니다.
자율주행자동차는 교통혼잡을 크게 줄여줄 것이다. 교통 정체의 주요 원인 중 하나는 사람의 실수로 인해 교통 정체가 발생하기 때문입니다. 자율주행차는 서로 통신할 수 있어 일정한 속도를 유지하고 충돌을 피하며 도로를 보다 효율적으로 사용할 수 있습니다. 이는 궁극적으로 통근자들에게 교통수단을 더 빠르고 덜 불편하게 만들 것입니다.
운송 부문은 전 세계 탄소 배출의 주요 원인 중 하나입니다. 자율주행차의 도입으로 탄소 배출이 크게 줄어들 것이다. 이러한 차량은 전기 모터, 재생 가능 에너지, 에너지 소비량을 줄이는 최적화된 운전 패턴으로 설계되었습니다. 전기 자동차는 기존 휘발유 자동차보다 훨씬 더 효율적이며 재생 가능 에너지를 사용하면 배출량을 더욱 줄일 수 있습니다.
그림 1: 자율주행차 자동화 수준에 대한 간략한 설명
자율주행차 시장은 커넥티드 차량 기술과 동적 이동성 애플리케이션의 높은 성장으로 인해 최근 몇 년 동안 상당한 성장을 보였습니다. 또한, 안전하고 생산적이며 효율적인 운전 옵션과 기술 무결성에 대한 필요성 증가는 위에서 언급한 예측 기간 동안 자율주행차 시장의 성장을 크게 설득하고 있습니다. 마찬가지로, 다양한 차량 내 기술과 센서의 급속한 발전은 자율주행차 시장 성장을 촉진할 것으로 예상되는 또 다른 동인입니다. 데이터브릿지 시장조사(Data Bridge Market Research) 분석에 따르면, 글로벌 자율주행차 시장은 2021년부터 2028년까지 연평균 복합 성장률(CAGR) 20.52%로 성장할 것으로 예상됩니다.
연구에 대해 자세히 알아보려면 다음을 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-autonomous-vehicle-market
그림 2: 기업들은 자율주행차 개발을 위한 주도권과 투자를 진행하고 있습니다.
그림: 자율주행차 부문의 주요 기업
모빌리티의 미래는 빠르게 변화하고 있으며, 기업은 자율주행차와 AI, ML 등 첨단 기술을 활용해 운영되는 기타 교통수단 개발에 막대한 투자를 하고 있습니다. 최근 뉴스에 따르면 기업들은 모빌리티 분야에서 큰 진전을 이루고 있으며 일부 기업은 자체 자율 주행 시스템을 만들기 위한 조치도 취하고 있습니다.
모빌리티 세계의 중요한 발전 중 하나는 최초의 완전 자율주행 차량의 출시입니다. Tesla, Google, Ford와 같은 회사는 모두 사람의 개입 없이 스스로 운전할 수 있는 차량을 출시했습니다. 이 자동차는 주변 환경을 감지하고 감지한 내용에 따라 결정을 내릴 수 있으므로 교통 및 기타 장애물을 통해 안전하게 탐색할 수 있습니다. 이 기술은 사람의 실수로 인한 자동차 사고를 줄일 수 있어 안전상의 이점이 있다는 점에서 호평을 받고 있습니다. 또한 운전자는 단순히 목적지에 들어가서 자동차를 타고 목적지까지 이동할 수 있어 운전자에게 더 큰 편의성을 제공할 수 있습니다.
예를 들어,
Tesla는 고급 센서, 카메라 및 컴퓨터를 사용하며 이러한 자동차는 주변 환경을 해석하고 그에 따라 반응할 수 있습니다. 이를 통해 도로를 쉽게 탐색하고 장애물을 피하며 A 지점에서 B 지점으로 안전하고 효율적으로 이동할 수 있습니다. 이 기술은 운전을 더욱 안전하게 만들 뿐만 아니라 전반적인 이동성 경험도 향상시킵니다. 딥 러닝 알고리즘을 활용함으로써 Tesla 차량은 경험을 통해 학습하고 새로운 상황에 적응할 수 있습니다. 이는 학생들이 다양한 유형의 도로, 교통 상황, 기상 조건으로부터 학습할 수 있음을 의미합니다. 이를 통해 승차감이 더욱 부드러워지고 시간과 에너지 사용량 측면에서 효율성이 향상됩니다.
Tesla 차량은 자신의 경험을 통해 학습할 수 있을 뿐만 아니라 V2V(Vehicle-to-Vehicle) 통신 기술을 통해 도로 위의 다른 차량과도 통신할 수 있습니다. Tesla 자동차는 교통 속도에 대한 정보를 서로 주고받고, 도로를 가장 효율적으로 사용하기 위해 서로 협력할 수 있습니다. Tesla는 또한 2022년에 차량에 새로운 차량 공유 기능을 도입할 계획입니다. 이를 통해 소유자는 운전 중이거나 운전하지 않는 동안에도 사용자와 차량을 공유할 수 있습니다. 이는 Tesla 차량을 소유한 사람들이 사용하지 않을 때 차량을 임대하여 추가 수익을 얻을 수 있음을 의미합니다.
이러한 모든 혁신 외에도 Tesla는 차량에 새로운 안전 기능을 도입하고 있습니다. 잠재적인 위험을 감지하기 위해 주변 환경을 모니터링하도록 설계된 자동 조종 장치 시스템입니다. 위험이 감지되면 운전자에게 경고하고 필요한 조치를 취합니다. 예를 들어 자동차 앞에 보행자나 동물이 감지되면 오토파일럿이 자동으로 제동을 걸거나 방향을 돌려 사고를 방지합니다. 이러한 모든 기술 발전으로 인해 Tesla는 2022년 자율주행차 산업의 선두주자가 되었습니다. 최첨단 기술과 향상된 안전 기능을 통해 Tesla는 사람들이 이동하는 방식에 혁명을 일으킬 것입니다.
자율 시스템의 개발은 상업 부문의 기업에게도 새로운 기회를 열어주었습니다.
전반적으로 자율주행차의 이동성은 삶의 점점 더 중요한 부분이 되어가고 있습니다. 기업들은 이 분야에 막대한 투자를 하고 있으며 안전성, 편의성, 경제성 측면에서 상당한 진전을 이루고 있습니다. 자율주행차는 모든 사람에게 효율적이고 안전하며 접근 가능한 교통 시스템을 제공함으로써 교통에 혁명을 일으킬 수 있는 잠재력을 가지고 있습니다.
반자율주행차 및 자율주행차 시장은 최근 몇 년간 상당한 성장을 보였습니다. 반자율주행차와 자율주행차는 엔진 생산성, 연비 향상, 차량 사고 최소화 등 많은 특징을 갖고 있습니다. 이는 이러한 차량의 수요를 증가시키고 시장의 성장을 주도할 것으로 예상되는 몇 가지 잠재적인 이점입니다. 또한, 반자율주행차와 자율주행차는 업데이트, 연결된 차량, 실시간 교통 개선 운전 지원 시스템을 제공하므로 차량의 효율성을 높일 수 있습니다. 반자율주행차와 자율주행차는 또한 스마트 운전에 빠져들 수 있는 능력을 제공하여 그에 따라 경로를 변경하는 데 도움을 줍니다. 이는 시장 성장을 위한 엄청난 기회를 창출할 것으로 예상되는 주요 요인 중 일부입니다. 데이터 브릿지 시장 조사(Data Bridge Market Research) 분석에 따르면, 글로벌 반자율주행차 및 자율주행차 시장은 2023년부터 2030년까지 연평균 복합 성장률(CAGR) 3.80%로 성장할 것으로 예상됩니다.
연구에 대해 자세히 알아보려면 다음을 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-autonomous-vehicle-market
지역분석
북미에서는 여러 도시에서 자율주행차를 교통 시스템에 적극적으로 통합하고 있습니다. 예를 들어, Alphabet Inc.의 자회사인 Waymo는 피닉스 대도시 지역에서 자율주행차를 이용한 공공 차량호출 서비스를 시작했습니다. 이번 계획은 교통 문제를 해결하고 주민들에게 편리한 이동 옵션을 제공하는 것을 목표로 합니다. 유럽 국가들은 자율주행차 도입에 상당한 진전을 보이고 있습니다. 예를 들어 영국 정부는 자율주행 기술 연구개발에 많은 투자를 해왔습니다. 아시아, 특히 중국에서는 자율주행차 분야의 핵심 플레이어 중 하나로 부상했습니다. Baidu 및 Didi와 같은 중국 기술 회사는 자율 이동성 솔루션 개발에 막대한 투자를 했습니다. 예를 들어 Baidu는 오픈 소스 자율 주행 플랫폼인 Apollo를 출시했으며 여러 자동차 제조업체와 협력하여 공공 도로에서 자율 주행 차량 기술을 테스트했습니다.
그림 3: 2035년까지 미국 시장의 총 공유 자율주행차 수(%)
출처: 국제교통포럼, 연방교통청(FTA), DBMR 분석
그림 4: 2035년까지 중국 시장의 총 공유 자율주행차 수(%)
출처: 국제교통포럼, 연방교통청(FTA), DBMR 분석
그림 5: 2035년까지 유럽 시장의 공유 자율 이동성 총 수(%)
출처: 국제교통포럼, 연방교통청(FTA), DBMR 분석
전반적으로 이러한 지역적 추세는 이동성을 개선하고, 혼잡을 줄이고, 교통 효율성을 향상시키는 솔루션으로서 자율주행차에 대한 관심이 높아지고 있음을 나타냅니다. 지속적인 기술 발전과 정부 지원 정책으로 인해 자율주행차 시장은 향후 상당한 성장을 이룰 준비가 되어 있습니다.
그림 6: 투자 분석의 지역적 차이
출처: 국제교통포럼, 연방교통청(FTA), DBMR 분석
전체 투자의 3분의 1 이상이 미국 등 모빌리티에 중점을 둔 기업에 투자되었으며, 중국(506억 달러), 영국(341억 달러), 이스라엘(185억 달러, 174억 달러)이 뒤를 이었습니다. Mobileye에 대한 투자에서 비롯됨). 영국을 제외한 유럽연합(EU)은 글로벌 자금 조달의 5%만 받음에도 불구하고 확인된 전체 기업의 19%를 포함하고 있습니다. 최고 투자자는 미국, 일본, 중국 출신이며, 가장 큰 투자자는 독일로 유럽연합에 약 40억 달러만 기부합니다.
글로벌 공유 모빌리티 시장은 고객 사이에서 우아하고 비용 효율적인 운송 방식이 널리 채택되면서 최근 몇 년간 상당한 성장을 보였습니다. 따라서 소비자들 사이에서 승차 공유의 인기가 높아짐에 따라 시장 성장이 촉진될 가능성이 높습니다. 또한, 전 세계 개발도상국의 인터넷 보급률 증가로 인해 차량 공유 서비스 모델에 대한 수요가 증가하고 있습니다. 고객 만족을 위한 새로운 유형의 서비스 도입 증가도 시장 성장의 주요 요인으로 작용할 것으로 예상됩니다. 데이터브릿지 시장조사(Data Bridge Market Research) 분석에 따르면, 글로벌 자율주행차 시장은 2023년부터 2030년까지 연평균 복합 성장률(CAGR) 31.18%로 성장할 것으로 예상됩니다.
연구에 대해 자세히 알아보려면 다음을 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-shared-mobility-market
선도적인 자동차 제조업체들은 자율주행차에 모빌리티를 구현하는 데 앞장서 왔습니다. 보고서의 정식 버전에서 Data Bridge Market Research는 가치(백만 달러) 및 볼륨(백만 단위) 측면에서 시장 규모를 제공합니다. 자율주행차 시장에 관한 이 보고서는 최근 개발, 무역법, 생산 분석, 가치 사슬 최적화, 기업의 시장 점유율, 국내 및 지역 시장 참가자의 영향에 대한 세부 정보를 제공합니다. 또한 새로운 수익원 기회, 규제 변화, 전략적 시장 성장 분석, 가치(백만 달러) 및 거래량(백만 단위) 측면에서 시장 규모, 시장 확장, 애플리케이션 틈새 및 지배력, 제품 승인, 제품 출시 및 지리적 위치에 대한 기회를 조사합니다. 트렌드. 자율주행차 시장에 대해 자세히 알아보려면 Data Bridge Market Research에 문의하여 분석가 요약을 받으시기 바랍니다. DBMR은 시장 성장을 위해 정보에 입각한 선택을 할 수 있도록 도와드립니다.
연구에 대해 자세히 알아보려면 다음 사이트를 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-autonomous-vehicle-market
자율주행차의 모빌리티를 변화시키는 기술 동향
자율주행차의 이동성을 변화시키는 기술 동향 중 일부. 자율주행차는 빠르게 진화하고 있으며, 최신 기술 동향을 주도하고 있습니다. 인공 지능(AI)부터 5G, 블록체인에 이르기까지 이러한 신기술은 사람들이 이동하고 차량과 상호 작용하는 방식과 차량이 운송에 사용되는 방식에 혁명을 일으키고 있습니다.
위에서 언급한 네 가지 주요 기술 동향은 자율주행차 기술의 급속한 발전을 주도하고 오늘날 사람들이 전 세계를 이동하는 방식을 변화시키고 있습니다. 이러한 기술은 더욱 발전할수록 모든 사용자를 위한 교통의 안전성, 효율성 및 편의성을 지속적으로 향상시킬 것입니다. AI, 5G, 블록체인, 클라우드 컴퓨팅으로 구동되는 자율주행차는 앞으로 사람들이 전 세계를 이동하는 방식에 혁명을 일으킬 것입니다.
무인 자동차를 위한 완전 자율 시스템 설계의 몇 가지 과제
도로 위의 기회는 무한하며, 인간이 그 모든 기회에 대비하는 것은 불가능합니다. 이 경우 상황에 대비해 알고리즘을 훈련시키는 것은 기술적으로 불가능합니다. 주어진 상황에서 물체나 생명이 파괴되지 않도록 다양한 도로 상황에 반응하는 방법을 시스템에 훈련시키는 것은 가장 어려운 작업 중 하나입니다. 자율주행차는 코너링, 고속도로 차량의 갑작스런 혼잡, 특이한 야생동물이나 동물의 횡단, 길을 건너려는 보행자, 움푹 들어간 곳, 열악한 도로 상황, 폐쇄된 도로 등 다양한 상황을 인식하고 대응할 수 있어야 합니다. 그리고 건설중인 도로. 가장 큰 과제 중 하나는 차량이 도로 상황을 인식하고 올바른 결정을 내리는 데 몇 초 밖에 걸리지 않는다는 것입니다.
자율주행차는 도로 상황 외에도 환경 조건을 인지하고 이에 따라 운전 결정과 전략을 조정해야 합니다. 예를 들어 자율주행차는 자동으로 강우량을 감지해 저속 주행을 제한해 마찰로 인한 사고를 방지해야 한다. 또한 차량은 유사한 날씨 변화를 인식하고 시기적절한 결정을 내려 원활한 주행을 보장해야 합니다. 또 하나는 자동차가 외부 온도를 판단해 에어컨 온도를 자동으로 조절하는 경우다.
원활하고 중단 없는 주행을 위해서는 앞서 언급했듯이 자율주행차는 항상 다양한 요소에 대한 최신 정보를 가지고 있어야 합니다. 단 하나의 업데이트라도 시스템에 도달하지 못하면 불필요한 결과를 초래하여 전체 차량의 의사 결정 능력에 영향을 미치게 됩니다. 예를 들어 내비게이션 시스템이 곧 폐쇄될 도로에 대한 정보를 수신하지 못하는 경우 차량은 도로가 깨끗하다고 가정하고 해당 도로를 향해 계속 가속할 수 있습니다. 충돌로 인해 부상을 입거나 재산 피해가 발생할 수 있습니다. 차량이 횡단하는 보행자나 회전하는 차량에 대한 최신 정보를 수신하지 못하는 경우 유사한 상황이 발생할 수 있습니다.
자율주행 자동차는 모든 종류의 교통 상황에서 운전해야 하는 도로에 진입해야 합니다. 트래픽은 고도로 조절되고 자체 규제될 수 있습니다. 그러나 사람들이 교통 규칙을 위반하는 경우가 종종 있습니다. 예상치 못한 상황에서 물체가 나타날 수 있습니다. 교통 정체가 사라지고 자동으로 이동하기 위한 전제 조건이 있을 때까지 끝없이 기다릴 수는 없습니다. 이러한 차량 중 더 많은 차량이 교통이 정리되기를 기다리고 있다면 궁극적으로 교통 교착 상태가 발생할 수 있습니다.
운전자가 제때에 조치를 취해야 하는 중요한 것 중 하나인 안전은 자율주행차 운행에 있어 주요 과제입니다. 시도되고 테스트된 모든 자율주행차가 완전 자율주행차인 것은 아닙니다. 수동 개입 모듈이 있습니다. 자율주행차에 대한 신뢰도가 아직 상대적으로 낮은 상황에서 운전자의 70%는 자율주행차에 수동 브레이크를 장착하길 원하고 있다. 자율주행차는 상호의존적인 장치와 장치의 네트워크로 구성되어 있고, 각 모듈이 제 역할을 할 것이라는 전체적인 믿음이 있기 때문에 이는 중요합니다.
자율주행차에서 가장 중요한 것은 사고 책임이다. 자율주행 자동차의 경우, 소프트웨어는 자동차를 운전하고 모든 중요한 결정을 내리는 주요 구성 요소가 될 것입니다. 초기 디자인에는 운전대 뒤에 사람이 물리적으로 배치되어 있었지만 Google이 선보인 최신 디자인에는 대시보드와 운전대가 없습니다.
자동차에 스티어링 휠, 브레이크 페달 또는 가속 페달을 제어할 수 있는 장치가 없는 설계에서 불행한 사고가 발생할 경우 자동차에 탑승한 사람은 어떻게 자동차를 제어해야 합니까? 또한, 자율주행자동차의 특성상 탑승자는 대부분 여유로운 상태에 있을 것이며, 교통 상황에 세심한 주의를 기울이지 않을 수도 있습니다. 주의가 필요한 상황에서는 조치를 취해야 할 때 상황을 피하기에는 너무 늦을 수 있습니다.
자율주행차에 탑승하는 경험은 기존 자동차를 운전하는 것만큼 원활해야 합니다. 이는 자율주행차가 운전자와 승객에게 원활한 상태를 유지하기 위해 백엔드에서 데이터를 생성하고 처리하는 모든 복잡성을 유지해야 함을 의미합니다. 조치를 취하기 위해 추가적인 좋은 데이터가 필요할 때마다 차량 속도를 늦추는 것은 도로에서 생명을 위협합니다. 자율주행차는 신뢰할 수 있는 운전자가 페달을 밟고 있다는 느낌을 받아야 합니다.
자율주행차는 내비게이션에 레이저와 레이더를 사용합니다. 레이저는 옥상에 장착되고 센서는 차량 본체에 장착됩니다. 레이더 원리는 주변 물체의 전파 반사를 감지하여 작동합니다. 도로에 있을 때 자동차는 지속적으로 무선 주파수를 방출하며, 이는 주변 자동차와 도로 근처의 다른 물체에 반사됩니다. 반사에 걸리는 시간을 측정하여 자동차와 물체 사이의 거리를 계산합니다. 그런 다음 레이더 판독값을 기반으로 적절한 조치가 취해집니다. 레이더 원리는 주변 물체의 전파 반사를 감지하여 작동합니다. 도로에 있을 때 자동차는 지속적으로 무선 주파수를 방출하며, 이는 주변 자동차와 도로 근처의 다른 물체에 반사됩니다. 반사에 걸리는 시간을 측정하여 자동차와 물체 사이의 거리를 계산합니다. 그런 다음 레이더 판독값을 기반으로 적절한 조치가 취해집니다. 이 기술을 도로 위의 수백 대의 차량에 사용하면 자동차가 자신의(반사된) 신호와 다른 차량의 신호(반사 또는 전송)를 구별할 수 있을까요? 레이더에 여러 무선 주파수를 사용할 수 있더라도 이 주파수 범위는 제조되는 모든 차량에 충분하지 않을 것입니다.
이것이 아마도 이 분야의 가장 큰 과제일 것입니다. 자율주행차는 매초 엄청난 양의 데이터를 생성하고 처리합니다. 많은 센서와 장치가 광범위하게 작동하여 환경에서 데이터를 감지하고 생성합니다. 여기에는 LIDAR, RADAR, SONAR, GPS 및 컴퓨터 비전이 포함됩니다. 자율주행차는 8시간 동안 운전하면 최대 100TB의 데이터를 생성할 수 있습니다. 그 결과 항상 거의 100% 가용성을 유지하는 대량의 클라우드 스토리지, 전송 및 처리 능력이 필요합니다. 차량이 의미 있게 작동하려면 이러한 모든 기능이 최고 수준에 있어야 합니다.
V2X 연결이란 자동차가 주변 환경 및 다른 자동차와 연결될 수 있음을 의미합니다. V2X 기술은 자율주행차가 주변의 물체와 요소를 감지할 수 있도록 함으로써 운전 중 위험을 줄이는 데 큰 도움이 됩니다. V2X는 텔레매틱스와 함께 작동하여 데이터를 보다 효율적으로 처리할 수도 있습니다. 또한 올바른 정보를 지속적으로 전송하고 수신하기 위해 다양한 작동 모드 간에 변경됩니다. V2X 연결에는 업계 표준 암호화 프로토콜을 사용하여 생성되는 모든 데이터와 임베디드 시스템을 보호하는 뛰어난 기능이 있습니다.
ADAS 제어는 자율주행차가 정확한 정보를 바탕으로 최선의 운전 선택을 할 수 있도록 돕습니다. 이는 교통량이 많지 않은 최적의 경로를 찾는 것, 좁은 공간에 쉽게 주차하는 것, 멀리서 걷는 사람들과 신호등을 알아내는 것, 날씨가 어떻게 될 것인지 아는 것 등을 의미합니다.
기본적으로 데이터 계층 구성 요소는 클라우드와 같은 영구 저장소에 저장된 데이터에 대한 액세스를 허용하는 애플리케이션의 일부입니다. 이를 통해 모듈은 즉시 처리를 위해 일반적으로 필요한 데이터를 사용할 수 있습니다. 이는 불필요한 중복 정보의 생성을 줄인다는 의미입니다.
ADAS 테스트를 통해 차량은 도로에서 운전을 시작하기 전에도 운전 결정을 저장할 수 있습니다. 이는 이러한 알고리즘이 스스로 학습하고 조정하기 위해 다양한 조건에서 여러 번 테스트를 거쳤기 때문입니다. ADAS 모듈은 사물을 감지하기 위해 정확하고 잘 작동할 준비가 되어 있습니다. 도로에서 사용하기 시작한 후에도 계속 좋아집니다.
결론과 미래
자율주행차의 이동성 변화는 잠재적으로 교통 시스템에 중대한 변화를 가져올 수 있습니다. 자율주행차는 교통 혼잡을 줄이고 도로 안전을 개선하며 탄소 배출을 줄여 운송을 더욱 효율적이고 비용 효율적이며 환경 친화적으로 만듭니다. 그러나 변화를 위해서는 필요한 인프라가 구축되고, 통신 프로토콜이 개발되고, 규제 프레임워크가 확립되어 자율주행차의 원활한 통합이 가능하도록 차량 제조업체, 기술 회사, 정책 입안자 및 규제 기관의 공동 노력이 필요합니다. 자율주행 운송의 미래, 이제 이 기술과 그 이점을 받아들여야 할 때입니다.
DBMR은 전 세계적으로 Fortune 500대 기업의 40% 이상에 서비스를 제공했으며 5000개 이상의 고객 네트워크를 보유하고 있습니다. 우리 팀은 귀하의 질문에 기꺼이 도움을 드릴 것입니다. 방문하다, https://www.databridgemarketresearch.com/ko/contact
문의하기