개요
"로봇공학에서의 생성적 AI"라는 용어는 로봇 시스템의 설계, 최적화 및 제어에서 생성적 인공지능 방법의 사용을 설명합니다. 이러한 방법의 예로는 GAN(생성적 적대 네트워크), VAE(변형 자동 인코더) 및 기타 딥 러닝 모델이 있습니다. 이러한 방법은 로봇에게 데이터로부터 학습하고, 신선한 아이디어를 제시하고, 변화하는 주변 환경에 적응할 수 있는 능력을 제공하여 적응성과 효율성을 높입니다.
로봇공학과 생성 AI는 함께 로봇이 성취할 수 있는 일을 변화시킬 수 있는 엄청난 잠재력을 가지고 있습니다. 로봇의 자율성을 향상시키고, 인간의 창의성을 모방하며, 생성 AI 기술을 로봇 공학과 융합하여 적응형 및 비지도 학습을 가능하게 합니다. 로봇공학에서 생성적 인공지능(Gerative Artificial Intelligence)이라는 주제는 기술의 지속적인 연구와 발전으로 인해 항상 변화하고 있습니다. 의료, 제조, 제빵, 금융 기관 등 다양한 용도로 사용할 수 있습니다. 그 영향은 고객 만족도와 운영 효율성에 느껴질 것입니다. 정부, 학술 기관, 기업이 함께 협력하면 윤리적 표준과 법적 프레임워크가 생성 AI의 개발을 따라잡아 책임감 있고 유리한 적용이 가능하도록 보장할 수 있습니다.
그림 1: 생성적 AI 로봇공학
로봇 공학에 사용되는 생성 AI 방법의 유형
- 생성적 적대 신경망(GAN): 생성자 신경망과 판별자 신경망을 동시에 훈련하는 데는 적대적 훈련 접근 방식이 사용됩니다. 판별자가 실제 샘플과 생성된 샘플을 식별하는 방법을 학습하는 동안 생성기는 실제 데이터 샘플을 생성하는 방법을 학습합니다. GAN은 로봇 공학에서 현실적인 센서 데이터, 제어 전략 및 기타 시스템 구성 요소를 생성하는 데 활용될 수 있습니다.
- VAE(변형 자동 인코더): VAE는 데이터를 각각 더 낮은 차원의 다양한 데이터 공간으로 인코딩 및 디코딩하도록 훈련할 수 있는 생성 모델 클래스입니다. VAE는 센서 데이터, 제어 전략 및 로봇 시스템의 기타 기능에 대한 간략한 표현을 학습하여 로봇 공학의 학습 및 최적화를 향상시킬 수 있는 잠재력을 가지고 있습니다.
- 강화 학습(RL): 에이전트가 주변 환경과의 상호 작용과 보상이나 벌칙의 형태로 피드백을 통해 의사 결정 기술을 습득하는 일종의 기계 학습입니다. 로봇 공학의 제어 정책, 경로 계획 및 기타 의사 결정 작업을 학습하기 위해 생성적 AI 접근 방식을 강화 학습과 통합할 수 있습니다.
- 진화 방법(EA): 자연 선택은 이러한 종류의 최적화 방법에 영감을 줍니다. 여러 세대에 걸쳐 잠재적인 솔루션을 반복적으로 개선함으로써 로봇 공학의 진화 알고리즘(EA)을 활용하여 로봇 구성 요소 설계, 제어 전략 및 로봇 시스템의 기타 측면을 최적화할 수 있습니다.
그림 2: 생성 AI 로봇공학의 이점
생성 AI 로봇 채택 과정에서 직면한 과제
생성 AI를 로봇과 통합할 때 고려해야 할 사항과 장애물이 많습니다. 로봇 공학에서 생성 AI의 적절하고 효율적인 적용을 보장하려면 배포 문제, 기술적 제약 및 윤리적 고려 사항을 신중하게 고려해야 합니다.
- 통합 및 배포의 어려움: 생성 AI를 현재 로봇 시스템에 통합하는 것은 어려울 수 있습니다. 다양한 종류의 하드웨어 및 소프트웨어와 함께 작동해야 하며 전체 시스템 아키텍처와 원활하게 통합되어야 합니다. 또한 실제 환경에서 생성 AI 모델을 로봇에 구현할 때 처리 용량, 전력 소비 및 실시간 의사 결정과 관련된 문제가 발생합니다. 더욱이, 생성 AI를 로봇공학에 접목시키면 인간과 로봇의 소통과 협력에 대한 의문이 제기됩니다. 로봇이 안전하고 신뢰할 수 있는 방식으로 사람들과 상호 작용하고 작업할 수 있도록 하려면 상당한 계획과 생각이 필요합니다.
- 불확실성과 기술적 제약: 제너레이티브 AI가 많은 잠재력을 갖고 있음에도 불구하고 여전히 해결되지 않은 질문과 기술적 한계가 있습니다. 진정으로 독창적이고 혁신적인 작품을 생산하는 능력은 그러한 어려움 중 하나입니다. 생성적 AI 모델은 놀라운 결과를 제공할 수 있지만 기존 데이터의 패턴과 인스턴스에 의존하는 경우가 많습니다. 진정한 창의성과 혁신을 추구하는 것은 계속해서 연구 과제가 되고 있습니다. 게다가 생성 AI 모델의 신뢰성과 탄력성에 대해서도 의구심이 있습니다. 중요한 걱정은 악의적인 행위자가 AI 시스템을 제어하는 적대적 공격입니다. 로봇 공학에서 중요한 기능인 생성 AI의 보안과 무결성을 보장하려면 지속적인 연구 개발이 필요합니다.
- 확장성: 높은 컴퓨팅 비용으로 인해 생성 AI 모델을 대규모 로봇 시스템이나 실시간 애플리케이션으로 확장하는 것이 어려울 수 있습니다.
- 데이터 요구사항: 특정 로봇 애플리케이션의 경우 생성 AI 알고리즘을 적절하게 훈련하는 데 필요한 방대한 양의 데이터를 얻는 것이 어려울 수 있습니다.
- 윤리에 대한 시사점: 로봇 공학에 생성 AI를 사용하는 데에는 심각한 윤리적 우려가 있습니다. 점점 더 자율화되고 정교해지는 로봇이 내린 결정이 도덕적 규범과 가치를 준수하는지 확인하는 것이 점점 더 중요해지고 있습니다. 의도하지 않은 영향이나 잠재적 피해를 방지하려면 책임, 개인 정보 보호, 편견 등의 문제를 적절하게 처리하는 것이 중요합니다. 개발자, 학계, 정치인은 함께 협력하여 로봇공학에서 생성 AI의 생성 및 적용을 위한 도덕적 표준을 만들어야 합니다.
파트너십, 협업, 합병 및 인수와 같은 다양한 전략적 결정을 내려 연구에 적극적으로 참여하고 다양한 관련 회사와 협력함으로써 이러한 과제를 극복할 수 있으며 생성 AI의 윤리적이고 중요한 로봇 공학 애플리케이션을 만들 수도 있습니다.
로봇공학 분야에서 생성적 AI의 주요 응용
- 로봇공학 디자인: 비용과 성능의 균형을 맞추는 혁신적인 구성을 생성함으로써 생성적 AI 접근 방식을 적용하여 관절, 액추에이터 및 팔다리를 포함한 로봇 부품의 설계를 최적화할 수 있습니다. 강력하고 효율적인 로봇 시스템은 이로 인해 발생할 수 있습니다.
- 로봇 동작 계획 및 제어: 생성 AI의 중요한 파급 효과는 로봇 동작 계획 및 제어에도 확장됩니다. 로봇은 대규모 데이터 세트에서 학습할 수 있기 때문에 효율성과 안전성 모두에 최적화된 동작 계획을 만들 수 있습니다. 로봇은 생성 알고리즘을 활용하여 다양하고 사실적인 모션 궤적을 생성할 수 있으며, 이는 까다로운 설정을 정확하게 탐색하는 데 도움이 됩니다. 이는 로봇이 혼잡한 지역을 통과하고 사람 및 기타 물체와 통신해야 하는 물류 및 창고 자동화와 같은 애플리케이션에 특히 유용합니다.
- 협업 및 인간-로봇 상호작용: 생성적 AI를 사용하면 인간과 로봇의 상호 작용 및 협업이 향상되어 더욱 지능적이고 인간이 조종할 수 있는 로봇이 탄생할 수 있습니다. 로봇은 생성적 AI 접근 방식을 사용하여 인간과 같은 진정한 행동을 하도록 훈련될 수 있으며, 이를 통해 사람과 원활한 의사소통 및 협력이 가능해집니다. 예를 들어, 생성 AI를 사용하면 사용자와 자연스럽게 대화하고 맞춤형 도움과 지원을 제공할 수 있는 챗봇과 가상 비서를 만들 수 있습니다.
이러한 용도 외에도 생성 AI는 산업, 의료, 금융, 교육 등 다양한 분야에 혁명을 일으킬 수 있는 잠재력을 갖고 있습니다. 이제 로봇은 생성 AI의 발전과 혁신으로 인해 어려운 작업을 수행하고, 변화하는 환경에 적응하며, 사람들과 더욱 의미 있게 소통할 수 있게 되었습니다.
- 테스트 및 시뮬레이션: 설계를 배포하기 전에 엔지니어는 생성 AI 모델을 사용하여 생성된 로봇 시스템 및 해당 설정에 대한 현실적인 시뮬레이션을 사용하여 설계를 테스트하고 개선할 수 있습니다. 이를 통해 개발 시간과 비용을 단축하는 동시에 로봇 시스템의 신뢰성을 향상시킬 수 있습니다. 생성 알고리즘은 로봇의 움직임을 지시하는 시스템에 활용될 수 있습니다. iPhone 영상을 통해 작업을 학습하는 로봇 Dobb-E는 초기 사례 중 하나입니다.
- 로봇 감지 및 인식: 로봇 공학은 인식 및 감지 기능을 향상시키기 위해 생성 AI에 크게 의존합니다. 생성 모델링과 생성적 적대 네트워크(GAN)를 사용하여 로봇은 실제 센서 입력을 복제하는 인공 데이터를 생성하도록 훈련될 수 있습니다. 로봇은 이 인공 데이터를 사용하여 인식 알고리즘을 훈련하고 향상함으로써 주변 환경을 더 잘 이해할 수 있습니다. 예를 들어, 생성 AI는 자율주행 자동차의 객체 감지 및 인식 시스템의 정밀도를 향상시켜 신뢰성과 안전성을 향상시키는 데 도움을 줄 수 있습니다.
글로벌 챗봇 시장은 향상된 고객 경험을 제공하기 위해 AI 기반 챗봇에 대한 수요가 증가함에 따라 최근 몇 년 동안 상당한 성장을 보이고 있습니다. 더욱이, 로봇에서 생성적 AI의 활용이 증가하고 인간과 같은 대화 경험을 위한 자가 학습 로봇을 구축하려는 이니셔티브가 증가하는 것도 향후 몇 년 동안 성장을 강화하는 또 다른 요인입니다. 데이터브릿지 시장조사(Data Bridge Market Research) 분석에 따르면 글로벌 챗봇 시장은 2021년부터 2029년까지 연평균 성장률(CAGR) 22.10%로 성장할 것으로 예상됩니다.
연구에 대해 자세히 알아보려면 다음을 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-chatbots-market
로봇공학 분야의 Generative AI와 관련된 사례는 다음과 같습니다.
- 2024년 2월, Amazon의 로봇 인력 확장의 다음 단계가 공개되었습니다. 회사는 창고 내 여러 부분의 로봇을 연결해 하나의 자율팀을 구성한 새로운 세퀴오아(Sequioa) 시스템이 운영 효율성을 크게 향상시켰다고 밝혔다. 로봇 공학과 자동화는 생성 AI로 인해 많은 잠재력을 가지고 있습니다. 그 결과, 거대 기술 기업은 현재 더 발전된 종류의 로봇을 위한 자금을 모으기 위해 노력하고 있습니다. 기업의 산업 혁신 펀드는 로봇 공학 및 AI 중심 기업에 대한 투자를 가속화할 것입니다.
- 2023년 11월, Google의 DeepMind는 33개 학술 기관과 협력하여 개발된 로봇 기능 데이터베이스인 Open X-Embodiment를 공개했습니다. 연구자들은 이 방법을 2009년에 설립되어 현재 1,400만 장 이상의 사진을 보관하고 있는 역사적인 데이터베이스인 ImageNet과 비교했습니다. 22개의 로봇 구현에서 500개 이상의 재능과 150,000개 이상의 활동을 수집하여 Open X-Embodiment를 만들었습니다. 사내 기술과 비교했을 때 DeepMind는 데이터를 사용하여 RT-1-X 모델을 훈련한 후 다른 실험실에서 로봇을 훈련하는 데 사용했을 때 50%의 성공률을 보고했습니다. 의심할 여지 없이 AI(특히 생성 유형)와 시뮬레이션이 이 과정에서 중요한 역할을 합니다.
- 2023년 10월 MIT 연구진은 수하물 쌓기, 자동차 범퍼와 로봇 팔 간의 충돌, 가벼운 제품 위에 무거운 물체를 올려놓는 등의 포장 문제를 보다 효과적으로 처리하기 위해 생성 AI의 일종인 확산 모델을 채택했습니다. 특정 종류의 제약 조건을 나타내도록 각각 훈련된 머신 러닝 모델 그룹이 방법론에 사용됩니다. 이러한 모델을 결합함으로써 포장 문제에 대한 모든 제약 조건을 동시에 고려하는 글로벌 솔루션이 생성됩니다.
생성 AI 로봇의 주요 트렌드
그림 3: 생성 AI 로봇의 최신 동향
- 자율 로봇: 인간의 지속적인 감독 없이 작업을 수행할 수 있는 로봇을 자율 로봇이라고 합니다. 이 로봇은 센서와 알고리즘을 사용하여 스스로 탐색하고 결정을 내립니다. 효율성과 안전성을 향상시키기 때문에 제조, 물류 등 다양한 산업에서 점점 더 중요해지고 있습니다. 자율 로봇은 사람들이 보다 복잡한 책임에 집중할 수 있도록 위험하거나 반복적인 활동을 처리할 수 있습니다. 자동화된 차량과 드론은 AI 기반 로봇공학이 어떻게 진화했는지 보여주는 두 가지 예일 뿐입니다. 추가 발전에는 기계 학습 훈련 모델, 콘텐츠 생성, 이미지 생성, 의학 발견, 음악 생성 도구, 코드 생성, 다중 모드 인공 지능 애플리케이션, 생성된 광고 네트워크 등이 포함됩니다.
- 디지털 트윈: 로봇 공학 및 생성 AI 분야에서 매우 가치 있는 추세는 디지털 트윈 기술입니다. 실제 물체나 시스템의 가상 복제본이나 시뮬레이션을 디지털 트윈이라고 합니다. 이는 로봇공학 분야에서 실제 로봇의 특성, 상호작용, 행동을 모방하는 디지털 대응물을 개발하는 과정을 의미합니다. 정교한 디지털 트윈을 개발하려면 실제 시나리오를 동적으로 시뮬레이션하고 변화하는 환경에 적응할 수 있는 생성 AI를 사용해야 합니다. 이 기술을 사용하면 엔지니어와 개발자는 로봇 시스템을 구현하기 전에 디지털 방식으로 최적화하고 문제를 해결할 수 있으므로 설계 프로세스가 더욱 효율적이고 개발 비용이 낮아지며 로봇 장치의 전반적인 성능이 향상됩니다. 생성 AI와 디지털 트윈의 결합은 다양한 애플리케이션에서 정확성, 적응성 및 신뢰성을 향상시켜 로봇 산업에 혁명을 일으키고 있습니다.
- NLP 개발: NLP 발전에는 기계 이해력과 인간 언어에 대한 반응 강화가 포함됩니다. 이 기술은 인간과 기계 간의 원활한 통신을 가능하게 함으로써 챗봇, 가상 비서, 언어 번역 도구 등 다양한 애플리케이션에 영향을 미칩니다. 또한 향상된 자연어 처리(NLP)를 통해 기계는 언어의 맥락, 감정, 뉘앙스를 이해할 수 있으므로 인간과 기계의 협력이 촉진됩니다. 더욱이 이러한 추세는 사용자 경험을 향상시킬 뿐만 아니라 인간과 유사한 텍스트를 해석하고 생성할 수 있는 정교한 AI 시스템의 생성을 발전시켜 자연스러운 인간-기계 통신에 더 가까워지게 합니다. 또한 자연어 처리(NLP)의 발전으로 컴퓨터가 인간의 언어 또는 지능을 얼마나 잘 이해하고 상호 작용하는지 향상되어 사실적인 이미지 생성을 통해 보다 직관적이고 사용자 친화적인 AI 기반 시스템이 탄생했습니다.
- 합성된 음성: 생성 AI 로봇 공학의 인기 있는 추세는 로봇에게 생생하고 자연스러운 음성을 제공하는 것을 목표로 하는 음성 합성입니다. 이와 같은 기술을 사용하면 기계가 사람과 효과적으로 상호 작용할 수 있어 사용자 경험이 향상되고 인간과 로봇의 상호 작용이 가능해집니다. 고급 자연어 처리 및 딥 러닝 기술을 통해 로봇은 음성 언어를 이해하고 표현력 있고 억양이 풍부한 응답을 생성할 수 있습니다. 결과적으로 상호 작용이 더욱 흥미롭고 관련성이 높아집니다. 이러한 추세는 개인화된 로봇부터 노인 동반자에 이르기까지 폭넓게 적용되며, 관계와 신뢰를 구축하려면 명확하고 표현력 있는 의사소통이 필수적입니다.
- 3차원(3D) 생성: AI는 로봇 공학을 통해 3D 생성 분야에서 상당한 진전을 이루고 있습니다. 여기에는 인공 지능을 사용하여 3차원 가상 모델이나 환경을 만드는 것이 수반됩니다. 이러한 모델은 복잡한 구조 설계, 가상 현실 경험 개선, 로봇 시스템 교육을 위한 현실적인 시나리오 모델링 등 다양한 작업에 적용될 수 있습니다. 컴퓨터 지원 설계, 시뮬레이션, 가상 프로토타입 제작과 같은 고급 분야는 현실적이고 복잡한 3D 소재 생성을 용이하게 하는 생성 알고리즘 개발의 이점을 누리고 있습니다. 이 기술은 복잡한 공간 데이터를 더 잘 이해하고 시각화함으로써 보다 현실적이고 몰입도 높은 디지털 공간에서 로봇 시스템을 개발하고 테스트하는 데 도움이 됩니다.
글로벌 자율 로봇 시장은 창고 자동화와 빠른 라스트 마일 배송에 대한 수요 증가로 인해 상당한 성장을 보였습니다. 데이터 브릿지 시장 조사(Data Bridge Market Research) 분석에 따르면, 글로벌 자율 로봇 시장은 2022년부터 2030년까지 연평균 복합 성장률(CAGR) 19.70%로 성장할 것으로 예상됩니다.
연구에 대해 자세히 알아보려면 다음을 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-autonomous-robot-market
제너레이티브 AI 로봇의 향후 전망
로봇공학 분야의 생성 AI에는 흥미로운 기회가 기다리고 있습니다. 이 분야의 개발과 혁신은 다양한 산업 분야에서 혁신적인 응용 분야의 문을 열어주고 있습니다.
- 다양한 부문에 미칠 수 있는 영향 로봇의 생성 AI는 수많은 산업에 큰 영향을 미칠 것으로 예상됩니다. 예를 들어 의료 분야의 생성적 AI는 진단 및 치료 계획에 도움이 될 수 있는 인공 이미지를 생성하여 의료 영상 촬영에 도움을 줄 수 있습니다. 생성적 AI는 신선하고 창의적인 솔루션을 통해 제조 산업의 운영과 설계를 최적화할 수 있습니다. 생성적 AI는 엔터테인먼트 분야에서 대화형의 개인화된 경험을 생성하는 데 사용될 수 있습니다.
- 기술 혁신 및 발전: 로봇공학에서 생성적 인공지능(Gerative Artificial Intelligence)이라는 주제는 기술의 지속적인 연구와 발전으로 인해 항상 변화하고 있습니다. 생성적 AI 모델의 기능을 향상시키기 위해 연구자들은 새로운 접근 방식과 방법을 연구하고 있습니다. 여기에는 생성적 딥 러닝, 생성적 적대 네트워크(GAN), 생성적 모델링의 개발이 포함됩니다.
이러한 개발의 결과로 더욱 복잡하고 현실적인 생성 AI 모델이 개발될 가능성이 높습니다. 결과적으로 로봇은 더욱 복잡하고 상상력이 풍부한 작업을 수행할 수 있게 되어 효율성과 다양성이 향상될 것입니다. 더욱이, 생성 알고리즘은 로봇 시스템이 의사 결정을 내리고 문제를 해결하는 데 더욱 능숙해지는 데 도움이 될 것입니다.
- 다양한 회사 및 정부 기관 간의 협력 기회: 로봇 공학의 생성 AI가 발전함에 따라 창의성을 키우고 이 기술의 잠재력을 최대한 활용하려면 팀워크가 필수적입니다. 조직은 해당 분야의 연구원 및 주제 전문가와 협력하여 어려운 작업을 수행하고 생성 AI의 경계를 넓힐 수 있습니다. 협업은 여러 분야의 대표자들이 함께 모여 로봇 공학에서 생성 AI의 잠재적인 적용을 조사하는 산업 간 동맹의 형태를 취할 수도 있습니다. 여러 분야의 지식을 결합하는 이러한 학제간 접근 방식은 혁신과 새로운 아이디어를 자극할 수 있습니다.
의료 시장의 글로벌 생성 AI는 여러 회사 간의 협업 증가, 기술 발전 증가, 의료 영상 향상에 대한 관심 증가 등 여러 요인으로 인해 최근 몇 년 동안 상당한 성장을 보였습니다. Data Bridge Market Research 분석에 따르면, 헬스케어 시장의 글로벌 생성 AI 시장은 2023년부터 2031년까지 연평균 복합 성장률(CAGR) 32.60%로 성장할 것으로 예상됩니다.
연구에 대해 자세히 알아보려면 다음을 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-generative-ai-in-healthcare-market
다음은 로봇의 생성 AI에 대한 향후 기회와 관련된 몇 가지 사례입니다.
- 2024년 3월, Nvidia Corporation은 인간과 유사한 로봇을 만들기 위한 생성 AI 기능을 갖춘 하드웨어 및 소프트웨어 플랫폼을 개발했습니다. 새로운 플랫폼은 인간과 유사한 로봇을 만들 수 있도록 genAI와 같은 소프트웨어 도구 모음과 함께 로봇과 인공 지능(AI)을 구동하는 컴퓨터 시스템으로 구성됩니다. 휴머노이드 로봇은 genAI 통합으로 인해 언어, 비디오, "인간 시연" 및 사전 경험의 조합을 사용하여 입력에 따라 행동할 수 있습니다.
- 2024년 3월, Amazon Web Services(AWS)와 Nvidia Corporation은 NVIDIA가 GTC 2024에서 공개한 새로운 NVIDIA Blackwell GPU 플랫폼을 AWS가 곧 제공할 것이라고 발표했습니다. 고객이 새로운 생성 인공 지능(AI) 기능을 활용할 수 있도록 AWS는 이제 NVIDIA GB200 Grace Blackwell Superchip 및 B100 Tensor Core GPU를 제공하여 오랜 전략적 협력을 확대합니다. 양사는 함께 가장 발전되고 안전한 인프라, 소프트웨어 및 서비스를 제공할 것입니다.
- 2024년 1월 Nvidia Corporation과 그 파트너인 Boston Dynamics, Sanctuary AI, Covariant, Unitree Robotics, Collaborative Robotics 등은 라스베이거스에서 열린 CES 2024에서 생성 AI와 로봇 공학을 통합하기 위한 최신 파트너십과 발명품을 선보였습니다. 자동차 파트너 명단을 통해 다양한 최첨단 기술이 전시되어 차량 엔지니어링, 성능 및 디자인 분야에서 AI의 혁신적인 잠재력을 입증했습니다. 자동차 산업에서는 생성적 AI와 소프트웨어 정의 컴퓨팅이 빠르게 활용되고 있으며, 이는 다가오는 해에 운전을 완전히 변화시킬 것으로 예상되는 획기적인 발전을 촉진할 것입니다.
결론
2024년까지 유전자 조작 인공지능 로봇공학 분야는 크게 발전할 것이며 과거보다 더 빠르게 산업에 혁명을 일으킬 것입니다. 로봇 공학과 인공 지능의 결합은 일상 생활과 산업에 혁명을 일으키며 광범위한 기회를 열었습니다. Generative AI Robotics의 발전 환경을 살펴보겠습니다. 인공지능과 로봇공학의 협력이 지능형 기계와 사람이 공존하는 세상을 만들고 창의적인 솔루션을 제공하며 일상의 경험을 향상시키고 있다는 증거가 있습니다.