개요

현재는 데이터를 저장하거나 전송할 때 암호화하는 것이 일반적인 관행이지만, 사용 중인 데이터, 특히 메모리에 대한 암호화는 종종 무시되는 경우가 많습니다. 게다가 기존 컴퓨팅 인프라에는 데이터와 코드를 적극적으로 사용하는 동안 이를 보호하는 강력한 메커니즘이 부족합니다. 이는 개인 식별 정보(PII), 금융 데이터 또는 건강 기록과 같은 민감한 정보를 다루는 조직에 과제를 제기합니다. 애플리케이션과 시스템 메모리에 있는 데이터 모두의 기밀성과 무결성을 손상시킬 수 있는 잠재적인 위협을 해결해야 하기 때문입니다. 기밀 컴퓨팅은 하드웨어 기반의 증명된 Trusted Execution Environment에서 계산을 수행하여 사용 중인 데이터를 보호합니다. 안전하고 격리된 환경을 구축함으로써 조직은 민감하고 규제된 데이터와 관련된 운영의 보안을 효과적으로 강화할 수 있습니다. 이러한 통제된 환경은 활성 사용 중에 애플리케이션 및 데이터에 대한 무단 액세스 또는 변경을 방지합니다. 결과적으로 이러한 조직의 전반적인 보안 상태가 크게 향상되었습니다.

소개

컴퓨팅에는 전송 중, 정지 중, 사용 중이라는 세 가지 데이터 상태가 포함됩니다. 데이터가 네트워크를 통해 활발하게 이동하는 경우 "전송 중"으로 간주됩니다. 저장되어 있지만 적극적으로 액세스되지 않는 데이터를 "미사용"이라고 합니다. 마지막으로 처리 또는 활용 중인 데이터는 '사용 중'으로 분류됩니다. 민감한 데이터의 저장, 소비, 공유가 일반화된 현대 시대에는 모든 상태에서 이러한 데이터를 보호하는 것이 점점 더 중요해지고 있습니다. 이는 신용 카드 데이터, 의료 기록, 방화벽 구성, 심지어 지리적 위치 데이터를 포함한 광범위한 민감한 정보와 관련됩니다. 이제 데이터 기밀성(무단 보기 중지)과 데이터 무결성(무단 변경 방지 또는 감지)을 모두 제공하기 위해 암호화가 일반적으로 배포됩니다. 현재 전송 중인 데이터와 저장 중인 데이터를 보호하는 기술이 일반적으로 배포되고 있지만 세 번째 상태인 사용 중인 데이터를 보호하는 것이 새로운 개척지입니다.

"사용 중인" 보호되지 않은 데이터에 대한 보안 위험

전송 중인 데이터와 저장 중인 데이터에 적용되는 보호 기능으로 인해 네트워크 및 스토리지 장치에 대한 위협 벡터가 점점 더 약화됨에 따라 공격자들은 사용 중인 데이터를 표적으로 삼는 방향으로 전환했습니다. 업계에서는 Target 침해와 같은 세간의 이목을 끄는 여러 가지 메모리 스크레이핑과 이 세 번째 상태에 대한 관심이 크게 높아진 CPU 측 채널 공격뿐만 아니라 Triton 공격과 같은 악성 코드 삽입과 관련된 여러 가지 세간의 이목을 끄는 공격을 목격했습니다. 우크라이나 전력망 공격.

지능형 맬웨어 방지는 인텔리전스 기반의 통합된 엔터프라이즈급 고도로 개발된 맬웨어 분석 및 보호 솔루션의 한 유형입니다. 또한 보안 팀은 공격을 신속하게 감지하고 협력하며 악성 코드가 피해를 입히기 전에 제어하는 ​​데 필요한 심층적인 가시성과 제어 수준을 제공합니다. Data Bridge Market Research에서 실시한 분석에 따르면, 지능형 악성코드 방지 시장 규모는 2028년까지 89억 117만 달러로 평가되며, 2021~2028년 예측 기간 동안 연평균 성장률 14.30%로 성장할 것으로 예상됩니다. 데이터 브리지 시장 조사 고급 맬웨어 방지에 대한 보고서는 예측 기간 동안 널리 퍼질 것으로 예상되는 다양한 요소에 대한 분석 및 통찰력을 제공하는 동시에 시장 성장에 미치는 영향을 제공합니다.

https://www.databridgemarketresearch.com/ko/reports/global-advanced-malware-protection-market

모바일, 엣지 및 IoT 장치에 저장되고 처리되는 데이터의 양이 계속 증가함에 따라 실행 중 데이터 및 애플리케이션의 보안을 보장하는 것이 더욱 중요해졌습니다. 이러한 장치는 원격 및 까다로운 환경에서 작동하는 경우가 많으므로 보안을 유지하기가 어렵습니다. 또한, 모바일 장치에 저장된 정보의 개인 특성을 고려하여 제조업체와 모바일 운영 체제 제공업체는 개인 데이터가 보호되고 공유 및 처리 중에 장치 공급업체와 제3자가 액세스할 수 없음을 입증해야 합니다. 이러한 보호는 규제 요구 사항을 준수해야 합니다. 인프라를 제어할 수 있는 상황에서도 가장 민감한 데이터가 사용되는 동안 보호하는 것은 강력한 심층 방어 전략의 필수 구성 요소입니다.

기밀 컴퓨팅은 하드웨어 기반 TEE(신뢰할 수 있는 실행 환경)를 활용하여 활성 사용 중에 데이터를 보호합니다. 기밀 컴퓨팅을 채택함으로써 앞서 논의한 많은 위협을 효과적으로 완화할 수 있습니다. TEE(신뢰할 수 있는 실행 환경)는 데이터 무결성, 데이터 기밀성 및 코드 무결성 측면에서 높은 수준의 보증을 보장하는 환경입니다. 하드웨어 지원 기술을 활용하는 TEE는 코드 실행 및 환경 내 데이터 보호에 대한 향상된 보안을 보장합니다.

기밀 컴퓨팅의 맥락에서 승인되지 않은 개체에는 하드웨어에 물리적으로 액세스할 수 있는 모든 사람과 함께 호스트의 다른 애플리케이션, 호스트 운영 체제, 하이퍼바이저, 시스템 관리자, 서비스 공급자 및 인프라 소유자가 포함됩니다. 데이터 기밀성은 TEE(Trusted Execution Environment) 내에서 데이터가 활용되는 동안 승인되지 않은 개체가 데이터에 액세스할 수 없도록 보장합니다. 데이터 무결성은 TEE 외부의 엔터티가 처리하는 동안 데이터에 대한 무단 변경으로부터 보호합니다. 코드 무결성은 승인되지 않은 개체가 TEE 내의 코드를 교체하거나 수정할 수 없도록 보장합니다. 종합적으로 이러한 속성은 데이터 기밀성을 보장할 뿐만 아니라 계산의 정확성을 보장하여 계산 결과에 대한 신뢰를 심어줍니다. 하드웨어 기반 TEE를 활용하지 않는 접근 방식에서는 이러한 수준의 보증이 없는 경우가 많습니다.

다음 표에서는 일반적인 TEE 구현을 사용 중인 데이터를 보호하는 두 가지 새로운 클래스의 솔루션인 HE(동형 암호화) 및 TPM(신뢰할 수 있는 플랫폼 모듈)의 일반적인 구현과 비교합니다.

표 1 - 기밀 컴퓨팅과 HE 및 TPM의 보안 속성 비교

 

HW 티

동형암호화

TPM

데이터 무결성

그리고

Y(코드 무결성에 따라 다름)

열쇠만

데이터 기밀성

그리고

그리고

열쇠만

코드 무결성

그리고

아니요

그리고

코드 기밀성

Y(작업이 필요할 수 있음)

아니요

그리고

인증된 발사

다양함

아니요

아니요

프로그래밍 가능성

그리고

부분(“회로”)

아니요

증명 가능성

그리고

아니요

그리고

복구 가능성

그리고

아니요

그리고

신뢰할 수 있는 실행 환경(TEE)

CCC(일반적인 업계 관행에 따름)에 따르면 TEE(신뢰할 수 있는 실행 환경)는 다음과 같은 세 가지 필수 속성으로 특징지어집니다.

그림 - TEE(신뢰할 수 있는 실행 환경) 특성

Confidential Computing: The Future of Cloud Computing Security

승인되지 않은 엔터티에는 호스트의 다른 애플리케이션, 호스트 운영 체제 및 하이퍼바이저, 시스템 관리자, 서비스 제공자, 인프라 소유자 또는 하드웨어에 물리적으로 액세스하는 기타 모든 사람과 같은 다양한 행위자가 포함됩니다. 이러한 속성은 데이터 기밀성과 TEE 내에서 수행되는 계산의 정확성을 종합적으로 보장하여 계산 결과에 대한 신뢰를 심어줍니다.

또한 특정 TEE 구현에 따라 다음을 포함한 추가 기능을 제공할 수 있습니다.

하드웨어 기반 TEE는 하드웨어 지원 기술을 활용하여 TEE 내 코드 실행 및 데이터 보호에 대한 강화된 보안 보증을 제공합니다. 하드웨어 기반 TEE에 의존하지 않는 접근 방식에는 이러한 수준의 보증이 없는 경우가 많습니다.

기밀 컴퓨팅의 이점

기밀 컴퓨팅은 데이터 개인 정보 보호 및 보안과 관련된 조직에 수많은 이점을 제공합니다.

그림 - 기밀 컴퓨팅의 이점

Confidential Computing: The Future of Cloud Computing Security

기밀 컴퓨팅 구현

기밀 컴퓨팅을 구현하려면 신중한 계획과 고려가 필요합니다.

다음 표는 다양한 메트릭의 확장성을 기존 컴퓨팅, 일반적인 하드웨어 기반 TEE를 사용한 컴퓨팅 및 동형 암호화 간에 비교하는 방법을 보여줍니다. 보안 비교와 마찬가지로 실제 답변은 공급업체, 모델 또는 알고리즘에 따라 다를 수 있습니다.

표 2 - 기밀 컴퓨팅과 HE 및 TPM의 확장성 속성 비교

속성

토종의

HW 티

동형암호화

데이터 크기 제한

높은

중간

낮은

계산 속도

높은

높음-중간

낮은

여러 머신으로 확장

더 많은 일

MPC(세트 간 데이터 결합) 기능

매우 제한적

구현의 과제

기밀 컴퓨팅은 상당한 이점을 제공하지만 조직은 이를 구현할 때 몇 가지 과제를 해결해야 합니다.

주요 전략

인텔은 새로운 기밀 컴퓨팅 이니셔티브를 발표했습니다. Intel은 2023년 1월 25일에 여러 가지 새로운 기밀 컴퓨팅 이니셔티브를 발표했습니다. 이러한 이니셔티브에는 다음이 포함됩니다.

Google은 기밀 클라우드 플랫폼을 발표했습니다. Google은 2023년 2월 1일에 Confidential Cloud Platform의 정식 출시를 발표했습니다. Confidential Cloud Platform은 조직이 클라우드에서 민감한 데이터를 보호하는 데 도움이 되는 서비스 제품군입니다. 이러한 서비스에는 다음이 포함됩니다.

Microsoft는 Azure용 기밀 컴퓨팅을 발표했습니다. Microsoft는 2023년 2월 3일에 Azure에 기밀 컴퓨팅을 도입한다고 발표했습니다. Azure용 기밀 컴퓨팅은 조직이 클라우드에서 중요한 데이터를 보호하는 데 도움이 되는 서비스 집합입니다. 이러한 서비스에는 다음이 포함됩니다.

다음은 기밀 컴퓨팅과 관련하여 최근 발표된 주요 전략적 이니셔티브의 몇 가지 예입니다. 이러한 이니셔티브는 조직이 기밀 컴퓨팅 기술을 채택하고 클라우드에서 중요한 데이터를 보호할 수 있도록 설계되었습니다.

실제 사용 사례

기밀 컴퓨팅은 다양한 산업 분야에서 실용적인 응용 프로그램을 찾아 조직이 민감한 데이터를 보호하고 개인 정보를 보호할 수 있도록 지원합니다.

그림 - 실제 사용 사례

Confidential Computing: The Future of Cloud Computing Security

키, 비밀, 자격 증명 및 토큰 저장 및 처리:

암호화 키, 비밀, 자격 증명 및 토큰은 민감한 데이터 보호를 담당하는 조직의 "왕국의 열쇠"입니다. 전통적으로 온프레미스 하드웨어 보안 모듈(HSM)은 보안 표준을 준수하고 이러한 자산의 보안을 보장하는 데 사용되었습니다. 그러나 기존 HSM의 독점 특성으로 인해 확장성과 클라우드 및 엣지 컴퓨팅 환경과의 호환성이 제한되어 비용이 증가하고 배포 문제가 발생했습니다. 기밀 컴퓨팅은 온프레미스, 퍼블릭/하이브리드 클라우드, 심지어 IoT 사용 사례의 네트워크 에지에서도 사용 가능한 표준화된 컴퓨팅 인프라를 활용하여 이러한 제한 사항을 해결합니다. ISV(독립 소프트웨어 공급업체)와 대규모 조직에서는 이미 암호화 및 비밀 정보를 안전하게 저장하고 처리하기 위해 기밀 컴퓨팅을 채택했습니다. 키 관리 애플리케이션은 하드웨어 기반 TEE(신뢰할 수 있는 실행 환경)를 활용하여 이러한 자산을 저장 및 처리하여 데이터 기밀성, 무결성 및 코드 무결성을 보장합니다. 기밀 컴퓨팅을 통해 달성되는 보안은 기존 HSM과 비슷하며 민감한 정보를 저장하고 처리하기 위한 보다 확장 가능하고 비용 효율적인 솔루션을 제공합니다.

퍼블릭 클라우드 사용 사례:

기존 퍼블릭 클라우드 환경에서는 클라우드 제공업체 인프라 내의 여러 계층에 신뢰가 배치됩니다. 기밀 컴퓨팅은 최종 사용자가 신뢰해야 하는 계층 수를 줄여 추가적인 보호 보장을 도입합니다. 사용 중인 애플리케이션과 데이터를 보호하는 하드웨어 기반 TEE(Trusted Execution Environment)를 사용하면 무단 행위자가 물리적 또는 권한 있는 액세스 권한을 갖고 있더라도 보호된 애플리케이션 코드 및 데이터에 액세스하는 데 심각한 문제에 직면하게 됩니다. 기밀 컴퓨팅의 목표는 신뢰할 수 있는 컴퓨팅 기반에서 클라우드 공급자를 제거하여 이전에 보안 문제 또는 규정 준수 요구 사항으로 인해 제한되었던 워크로드를 퍼블릭 클라우드로 안전하게 마이그레이션할 수 있도록 하는 것입니다.

다자간 컴퓨팅

여러 당사자 간에 데이터 및 처리 능력을 공유할 수 있는 새로운 컴퓨팅 패러다임이 등장함에 따라 민감하거나 규제된 데이터의 기밀성과 무결성을 보장하는 것이 중요해졌습니다. 기밀 컴퓨팅은 조직이 신뢰할 수 없는 플랫폼에서도 개인 정보를 침해하지 않고 데이터를 안전하게 공유하고 분석할 수 있는 솔루션을 제공합니다. 개인 다자간 분석은 금융 서비스, 의료, 정부 등 다양한 영역에 적용되어 기본 데이터나 기계 학습 모델을 노출하지 않고 개인 데이터를 결합하고 분석할 수 있습니다. 기밀 컴퓨팅을 사용하면 내부 위협으로부터도 데이터 변조 및 손상으로부터 보호되어 안전한 협업을 보장하고 보안, 개인 정보 보호 및 규제 위험을 완화하는 동시에 글로벌 데이터 공유의 잠재력을 실현할 수 있습니다.

블록체인

블록체인은 중앙화된 권한 없이도 거래를 기록하고 검증할 수 있는 불변의 원장을 제공합니다. 투명성과 데이터 일관성을 제공하지만 변경 불가능한 블록체인에 민감한 데이터를 저장하면 개인 정보 보호 문제가 발생합니다. 기밀 컴퓨팅은 하드웨어 기반 TEE(Trusted Execution Environment)를 활용하여 블록체인 구현을 향상시킬 수 있습니다. TEE를 사용하면 사용자는 스마트 계약을 안전하게 실행하여 데이터 개인 정보 보호, 확장성 및 검증 최적화를 보장할 수 있습니다. TEE 기반 증명 서비스는 거래에 대한 신뢰성 증명을 제공하므로 각 참가자가 과거 데이터를 독립적으로 검증할 필요가 없습니다. 또한 기밀 컴퓨팅은 블록체인 시스템의 합의 프로토콜과 관련된 계산 및 통신 비효율성을 해결합니다.

모바일 및 개인용 컴퓨팅 장치

클라이언트 장치의 기밀 컴퓨팅은 데이터 개인 정보 보호 및 무결성을 보장하는 사용 사례를 제공합니다. 애플리케이션 개발자와 장치 제조업체는 공유 또는 처리 중에 개인 데이터가 관찰되지 않도록 보장하여 제조업체의 책임을 제거할 수 있습니다. TEE(신뢰할 수 있는 실행 환경)를 사용하면 기능 정확성을 공식적으로 검증할 수 있으므로 개발자는 사용자 데이터가 장치를 떠나지 않았음을 증명할 수 있습니다. 예를 들어 지속적인 인증 구현은 TEE 내에서 작동하여 민감한 생체 인식 또는 행동 데이터를 노출하지 않고 사용자를 식별할 수 있습니다. 마찬가지로 분산형 온디바이스 모델 교육은 교육 데이터 유출 없이 모델을 개선하고 개선 사항을 공유할 수 있으며, 하드웨어 기반 TEE에서 상호 증명을 통해 사용자 제어 정책 및 제약 조건을 제공합니다.

엣지 및 IoT 사용 사례:

기밀 컴퓨팅은 데이터 개인 정보 보호와 보안이 가장 중요한 엣지 및 IoT 환경에서 귀중한 사용 사례를 찾습니다. 예를 들어 DDoS 탐지를 위한 홈 라우터 내 로컬 검색 및 필터링과 같은 시나리오에서 기밀 컴퓨팅 환경은 TCP/IP 패킷 메타데이터에서 유추된 민감한 사용자 행동을 보호할 수 있습니다. 다른 예로는 대기 시간을 줄이기 위한 비디오 메타데이터 생성, 관심 인물 템플릿을 사용한 CCTV 카메라 감시, 온디바이스 교육 모델과 같은 에지 기밀 기계 학습 처리가 있습니다. 기밀 컴퓨팅 기술은 또한 신뢰할 수 없는 당사자가 물리적으로 접근할 수 있는 환경에서 장치에 대한 물리적 접근을 이용하는 공격을 완화하는 데 도움이 됩니다.

암호화를 사용하여 서로 연결된 기술 데이터베이스인 기록의 데이터 모음을 블록체인이라고 합니다. 전 세계적으로 확장되는 국경 간 무역 활동으로 인해 이 기술에 대한 수요가 증가할 것으로 예상됩니다. Data Bridge Market Research는 2022년 100억 2천만 달러 규모의 블록체인 시장이 2023년부터 2030년까지 예측 기간 동안 연평균 성장률(CAGR) 71.96%로 성장하여 2030년까지 7,661억 달러에 이를 것이라고 분석합니다. 기업과 투자자는 블록체인 기술 투자를 늘릴 수 있습니다. 또한, 블록체인 기술은 기업의 노력에 있어 머지않아 더욱 효과적이고 효율적이 될 것으로 예상됩니다. DeFi는 금융 서비스와 돈에 대한 은행의 통제를 약화시키는 새로운 블록체인 기반 금융 기술입니다. 예측 기간 동안 분산형 금융 공간에서 전략적 이니셔티브가 증가하여 시장 성장이 예상됩니다.

향후 동향 및 방향

기밀 컴퓨팅 분야는 빠르게 발전하고 있으며 몇 가지 미래 동향과 방향을 확인할 수 있습니다.

결론

기밀 컴퓨팅은 신뢰할 수 없는 환경에서 처리하는 동안 민감한 데이터를 보호하기 위한 획기적인 접근 방식을 제공합니다. 데이터 격리, 보안 엔클레이브, 증명, 암호화 및 신뢰 가정 최소화와 같은 원칙을 결합함으로써 조직은 데이터의 기밀성과 무결성을 보장할 수 있습니다. 성능, 키 관리, 레거시 시스템 및 애플리케이션 이식성과 관련된 문제에도 불구하고 기밀 컴퓨팅 구현의 이점은 상당합니다. 실제 사용 사례는 의료, 금융, 엣지 컴퓨팅 및 클라우드 컴퓨팅에서의 가치를 보여줍니다. 모범 사례를 따르고 미래 동향을 고려함으로써 조직은 점점 더 상호 연결되는 세상에서 민감한 데이터를 보호하고 개인 정보를 보호하기 위해 기밀 컴퓨팅을 수용할 수 있습니다.


DBMR은 전 세계 Fortune 500대 기업의 40% 이상에 서비스를 제공했으며 5000개 이상의 고객 네트워크를 보유하고 있습니다. 우리 팀은 귀하의 질문에 기꺼이 도움을 드릴 것입니다. 방문하다, https://www.databridgemarketresearch.com/ko/contact

문의하기

더 알아보기

영향 및 조치에 대한 추가 통찰력