Global Natural Language Processing Nlp Healthcare Life Sciences Market
시장 규모 (USD 10억)
연평균 성장률 :
%

![]() |
2024 –2031 |
![]() |
USD 2.11 Billion |
![]() |
USD 8.48 Billion |
![]() |
|
![]() |
|
글로벌 자연어 처리 NLP 헬스케어 생명 과학 시장은 2023년에 21억 1천만 달러로 평가되었습니다. 시장 규모는 19%의 CAGR로 성장하여 2031년까지 84억 8천만 달러에 도달할 것으로 예상됩니다.
글로벌 자연어 처리 NLP 헬스케어 생명 과학 시장 – 산업 개요
의료 및 생명 과학 분야는 전자 건강 기록, 임상 시험 보고서, 연구 데이터, 환자 보고서를 포함한 엄청난 양의 데이터를 생성합니다. 세계 경제 포럼에 따르면 의료 산업은 전 세계에서 생성된 데이터의 30% 이상을 생성하며, 그 중 대부분은 사용되지 않습니다. 의료 분야에서 자연어 처리(NLP)를 통합하면 의료 데이터를 처리하는 데 큰 역할을 하여 혁신과 발명으로 이어지고, 이는 잠재적으로 다양한 건강 상태에 효과적인 치료법과 요법, 약물, 약물을 발견하는 기반이 될 수 있습니다. NLP는 포괄적인 데이터 분석 중심 접근 방식으로 의료 및 생명 과학 산업을 완전히 변화시켰습니다. 이제 NLP의 비정형 데이터, 감정 분석, 명명된 엔터티 인식 및 약물 발견에 대한 동적 분석을 통해 환자 참여를 크게 개선하는 데 도움이 되는 귀중한 통찰력을 추출하여 사용되지 않는 의료 및 생명 과학 기록이 없으며, 결과적으로 글로벌 NLP 의료 생명 과학 시장이 확장되고 있습니다.
Data Bridge Market Research 시장 보고서는 최근 개발 사항, 무역 규정, 시장 점유율, 세분화 및 지역 분석에 따른 시장 동향, 시장 참여자의 영향, 새로운 수익 창출처 측면에서의 기회 분석, 시장 규정, 전략적 시장 성장 분석, 시장 규모, 범주별 시장 성장, 응용 분야 틈새 시장 및 지배력, 제품 승인, 제품 출시, 지리적 확장 및 시장의 기술 혁신에 대한 세부 정보를 제공합니다. 시장에 대한 자세한 정보를 얻으려면 Data Bridge Market Research의 전문가 분석가 팀에 문의하십시오. 저희 팀은 귀하가 사업 성장을 달성하기 위해 정보에 입각한 시장 결정을 내리는 데 도움을 드릴 것입니다.
글로벌 자연어 처리 NLP 헬스케어 생명 과학 시장 규모
NLP Healthcare Life Sciences 시장 보고서 지표 세부 정보 |
|
예측 기간 |
2024-2031 |
기준 연도 |
2023 |
역사적 해 |
2022 (사용자 정의 가능 2016-2021) |
측정 단위 |
미국 달러 10억 |
데이터 포인터 |
시장 통찰력, 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자 및 시장 시나리오, 심층적인 전문가 분석, 환자 역학, 파이프라인 분석, 가격 분석 및 규제 프레임워크. |
NLP와 의료 및 생명 과학의 융합은 데이터를 활용하여 이 부문의 이익을 위해 의학에 진화를 가져왔습니다. 의료 데이터의 기하급수적 증가로 인해 구조화되지 않은 데이터의 바다를 관리하여 귀중한 통찰력을 얻을 수 있는 NLP 솔루션에 대한 필요성이 높아지고 있습니다. AI와 머신 러닝의 지속적인 혁신은 NLP 애플리케이션의 역량과 정확성을 개발하는 데 도움이 되며, 의료 분야의 연구 개발을 강화하기 위해 NLP 기술 도입을 더욱 장려하고 있습니다. NLP와 의료의 상호 연결은 시장 성장을 제공하기 위해 환자 치료와 의료 서비스를 조정하는 의료 서비스 제공자에게 큰 도움이 됩니다. Databridge Market Research는 시장을 종합적으로 분석하여 글로벌 자연어 처리 NLP 의료 생명 과학 시장이 3.64%의 CAGR로 증가하고 있다고 밝혔습니다. 시장 규모는 2023년에 21억 1,000만 달러로 평가되었으며 2031년까지 84억 8,000만 달러로 성장할 것으로 예상됩니다.
NLP Healthcare Life Sciences 시장 역학
NLP Healthcare Life Sciences 시장 성장 동인
추가 분석을 위한 전자 건강 기록(EHR) 구성
의료 기관에서 사용하는 전자 건강 기록(EHR)은 구조화, 저장 및 분석하기 어려운 환자 관련 데이터를 대량으로 생성합니다. 이러한 전자 기록에는 일반적으로 의료 보고서, 환자 병력 및 기타 종류의 데이터가 포함됩니다. 이러한 데이터를 구성하고 검토하는 것이 중요한 것뿐만 아니라 이 데이터에 쉽게 액세스할 수 있는 것도 마찬가지로 중요합니다. 임상 문서, 음성 인식, 데이터 마이닝 연구 및 임상 의사 결정 지원을 포함하는 NLP 기술은 의료 데이터 추출, 검토 및 사용에 따른 가용성 보장에 매우 생산적입니다. NLP를 활용함으로써 의료 제공자는 이 방대한 데이터를 보다 효과적으로 분석하고 해석하여 향상된 임상 의사 결정, 개인화된 환자 관리 및 더 큰 운영 효율성을 달성하여 시장 성장을 촉진할 수 있습니다.
인공지능(AI)과 머신러닝(ML) 기반 예측 분석
NLP는 통계 및 분석 모델을 갖춘 인공 지능 의 하위 분야 로, 추세와 패턴을 식별하는 데 역할을 합니다. 의료 분야의 NLP에 복잡한 데이터가 제공되면 환자 기록에 대한 포괄적인 분석을 수행하도록 구조화됩니다. 즉, 환자 관련 데이터에 대한 예측 분석을 실행하여 현재 건강 상태와 신체에 미치는 영향 수준을 파악하고 환자가 취약한 질병과 질환을 예측하는 데 도움이 됩니다. 이러한 기술을 사용하면 매우 큰 데이터 세트에서 유용한 통찰력을 추출하고 패턴을 식별하며 결과를 예측하여 보다 정보에 입각한 임상적 의사 결정과 더 나은 환자 결과를 얻을 수 있습니다. 이 예측 분석의 결론은 예측된 건강 상태를 예방하기 위한 향상된 환자 치료와 고급 예방 조치입니다. NLP를 통한 예측 분석은 환자 치료 서비스를 개선하고 시장 성장을 촉진하는 데 크게 기여합니다.
환자 기록 및 문서화 자동화로 의료비 절감
자연어 처리(NLP)를 기반으로 하는 자동화된 임상 문서화는 구술 또는 서면 정보를 구조화되고 실행 가능한 데이터로 변환하여 환자 기록 관리를 간소화합니다. 이 자동화는 의료 전문가의 부담을 줄이고, 수동 입력 오류를 최소화하며, 환자 정보가 정확하고 포괄적으로 기록되도록 보장합니다. 이 자동화 기술은 비용 효율적인 방법으로, 의료 전문가가 행정 업무보다는 환자 치료에 더 많은 시간을 할애할 수 있게 하여 정확성과 의료 기록 보관의 전반적인 효율성을 향상시킵니다. 이러한 단순한 작업이 자동화됨에 따라 의료 전문가는 비용 효율성을 누리는 동시에 환자 치료의 전반적인 질을 향상시킵니다. 또한 자동화를 통해 다른 의사 또는 의료 센터의 데이터베이스에 저장된 전체 환자 기록을 정리하여 건강 기록을 통합할 수 있습니다. NLP로 인해 의료가 비용 효율적으로 전환되는 것은 글로벌 NLP 의료 생명 과학의 성장을 위한 자극입니다.
NLP Healthcare Life Science 시장 성장 기회
맞춤형 치료 계획
NLP는 개인화되고 집중된 치료 계획을 준비하는 데 중요한 역할을 합니다. NLP는 전자 건강 기록, 임상 기록, 병력과 같은 다양한 출처에서 환자 데이터를 추출하고 통합하는 기능을 통해 환자의 특정 요구 사항, 유전적 요인 및 건강 상태를 쉽게 처리하고 식별할 수 있습니다. 이를 통해 의료 서비스 제공자는 환자의 요구에 맞는 치료 계획을 준비할 수 있습니다. 개인화된 치료 계획을 고안하는 것은 의사가 환자에게 가장 효과적인 치료 과정을 만들고 환자 기반을 확장할 수 있는 기회입니다. 예를 들어, NLP는 환자 병력의 패턴을 강조하여 다른 경우와 유사한 경우 가장 효과적일 가능성이 높은 약물을 결정하거나 가능한 부작용을 식별할 수 있습니다. 따라서 NLP는 정밀 의학을 지원하여 개입이 보다 집중적이고 효과적이어서 치료 효율성과 환자 결과가 개선됩니다.
웨어러블에 IoT 통합
IoT로 구동되는 NLP가 통합된 웨어러블은 실시간 환자 데이터를 수집할 수 있습니다. 하루 종일 환자의 건강을 원격으로 모니터링하는 데 도움이 되며 의료 전문가가 합병증과 변화를 기록하여 미래에 그러한 복잡성을 방지하기 위한 행동 계획을 준비하기 위해 즉시 조치를 취할 수 있습니다.
제약 및 바이오 기술 회사와의 협력
제약 및 생명공학 기업과 협력하여 자연어 처리(NLP)를 약물 발견, 임상 시험 관리 및 약물 안전 감시 프로세스에 통합하면 생명 과학의 효율성이 높아지고 혁신이 가속화됩니다. NLP는 의료 기록 및 환자 보고서에서 데이터 추출을 자동화하여 임상 시험의 효율성을 높이고 시험 데이터의 빠른 모집 및 분석을 용이하게 합니다.
NLP Healthcare Life Science 시장 규모 성장 과제
의료 및 건강 과학 분야의 NLP는 일반적으로 다른 명령에는 적용되지 않을 수 있는 특정 용어 그룹으로 제공됩니다. 인간 언어는 계속 진화하기 때문에 미리 정의된 용어 그룹은 데이터를 부정확하게 구성할 수 있습니다. 이는 일반적으로 NLP 프로그램에 검사 중인 비정형 데이터와 일치하지 않을 수 있는 내장 용어 그룹이 있는 경우 발생합니다. 이러한 과제는 일정 수준의 인간 참여로 쉽게 극복할 수 있습니다.
NLP는 구조화되지 않은 데이터를 정리하고 분류할 수 있습니다. 그러나 이 도구는 인간 언어의 복잡성에 직면하여 덜 효율적이 될 수 있습니다. 복잡한 언어, 방언 및 참조 지점에 대처하지 못할 수 있습니다. 결과적으로 거짓 양성 및 거짓 음성의 가능성이 높아집니다.
NLP Healthcare Life Science 시장 규모 성장 제약
데이터 개인정보 보호 및 보안 문제
NLP 솔루션을 적용할 때 민감한 환자 정보를 처리하면 개인정보 보호법과 데이터 보안 침해에 대한 심각한 우려가 발생합니다. 의료 서비스 제공자는 이미 NLP 기술을 최대한 구현할 수 있는 모든 기회를 모색하고 있지만, 미국의 HIPAA와 유럽의 GDPR에 따른 엄격한 데이터 보호법을 통과해야 합니다. 둘 다 환자의 기밀성을 유지하고 개인 건강 정보에 대한 무단 액세스를 막기 위해 제정되었습니다. 이 모든 것을 달성하려면 NLP 시스템이 완벽하게 보안이 활성화되어야 합니다. 이 요구 사항은 저장 중 및 전송 중인 데이터의 암호화를 위한 강력한 방법, 데이터에 대한 액세스를 허가된 사용자로만 제한하는 매우 엄격한 액세스 제어, 환자의 신원이 원치 않게 노출되는 것을 방지하기 위한 익명화 기술을 적용하여 충족되어야 합니다. 이러한 보안 프로토콜을 집계하면 다음을 보장할 수 있습니다.
NLP 시스템의 통합 복잡성
자연어 처리(NLP) 시스템을 EHR 및 임상 시스템을 포함한 기존 의료 IT 인프라와 통합하는 것은 복잡하고 시간이 많이 걸릴 수 있습니다. 의료 기관은 NLP 솔루션을 배포할 때 상호 운용성 문제, 데이터 표준화 및 레거시 시스템과의 호환성과 같은 과제에 직면합니다. 통합 프로세스에는 다양한 플랫폼에서 원활한 연결성과 기능을 보장하기 위해 IT 팀과의 신중한 계획, 사용자 정의 및 조정이 필요합니다. 게다가, 의료 종사자에게 NLP 도구를 효과적으로 활용하고 생성된 통찰력을 해석하도록 교육하는 것은 추가적인 구현 과제를 제기합니다.
NLP Healthcare Life Science 시장 범위 및 추세
NLP Healthcare Life Science 시장 세분화 개요 |
|||
세그먼트 유형 |
하위 세그먼트 |
||
요소 |
독립형 솔루션 및 서비스 |
||
NLP 유형 |
규칙 기반 NLP, 통계적 NLP, 하이브리드 NLP |
||
배포 모드 |
온프레미스, 클라우드 |
||
조직 규모 |
대기업, 중소기업 |
||
|
|
||
최종 사용자 |
의사를 위한 NLP, 연구자를 위한 NLP, 환자를 위한 NLP, 임상 운영자를 위한 NLP |
주요 통찰력
- 최근 몇 년 동안 AI가 의료 분야에 획기적인 변화를 가져올 잠재력을 갖추면서 머신 러닝과 NLP 기술을 채택하여 증가하는 양의 데이터를 효과적으로 처리하고, 병원과 의료 연구 환경에서 임상 기록의 관리와 운영을 간소화하는 자동화된 임상 코딩이라는 가장 인상적인 응용 프로그램 중 하나가 활성화되었습니다.
- 최근 설문조사에서 검토된 바와 같이, 최근 몇 년 동안 딥러닝(현재 AI의 주류 접근 방식)을 활용한 자동화된 임상 코딩에 대한 기사가 급증했습니다.
- 우려 사항이 해결되고 채팅 봇의 안전성과 효능이 지적되었지만, 의료의 인간적 측면은 대체될 수 없습니다. 이런 방식으로 채팅 봇은 의료 전문가와 협력하여 임상 실무의 필수적인 부분이 되어 비용을 줄이고 워크플로 효율성을 향상시키고 더 나은 결과를 위한 결과를 개선할 수 있습니다.
NLP Healthcare Life Science 시장 지역 분석 – 시장 동향
NLP Healthcare Life Science Market 지역 개요 |
|
지역 |
국가 |
유럽 |
독일, 프랑스, 영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 나머지 지역 |
아시아 태평양 |
중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 기타 아시아 태평양 지역 |
북아메리카 |
미국, 캐나다, 멕시코 |
중동 |
사우디 아라비아, UAE, 남아프리카, 이집트, 이스라엘, 중동 및 아프리카 |
남아메리카 |
브라질, 아르헨티나 및 남미의 나머지 지역 |
주요 통찰력
- 북미는 NLP 솔루션에 대한 수요 증가와 로봇공학 및 NLP 관련 연구 개발 이니셔티브에 대한 상당한 투자로 인해 시장을 지배할 것으로 예상됩니다. 이 지역의 첨단 의료 인프라와 주요 기술 거대 기업의 강력한 입지는 임상 문서화, 환자 상호 작용 분석 및 데이터 분석을 포함한 다양한 애플리케이션에서 NLP 기술의 빠른 채택을 촉진합니다.
- 아시아 태평양 지역은 비즈니스 운영 최적화를 목표로 하는 첨단 기술의 광범위한 채택으로 인해 상당한 성장을 목격할 것으로 예상됩니다. 의료 IT 인프라에 대한 투자 증가와 임상 의사 결정 프로세스 및 환자 참여 개선에 있어 NLP의 이점에 대한 인식 증가는 이러한 성장을 주도하는 주요 요인입니다.
- 네덜란드 과학 연구 기구(NWO)는 생물의학 연구 조사에서 얻은 과학적 데이터 분석을 위해 NLP를 적용하는 프로젝트에 참여하고 있습니다. 목표는 새로운 치료법을 개발하고 질병 생물학에 대한 이해를 개선하는 것입니다.
- 유럽 연합이 자금을 지원하는 European Health Data Space(EHDS) 프로젝트는 여러 유럽 언어를 처리할 수 있는 NLP 도구를 개발하는 데 중점을 두고 있습니다. 이 이니셔티브는 유럽 전역의 다양한 언어와 방언으로 건강 데이터를 처리할 수 있는 표준화된 NLP 솔루션을 만드는 것을 목표로 합니다.
- 영국의 NHS Digital은 임상 문서화 및 정보 검색을 개선하기 위해 NLP 기술을 EHR 시스템에 통합하는 데 주력하고 있습니다. 이러한 통합은 환자의 데이터 정확도 수준을 향상시키려는 시도이며, 다른 의미에서는 의료 기록에서 데이터 추출 및 분석 프로세스를 자동화하기 때문에 올바른 임상적 결정을 적절하게 내릴 수 있게 됩니다.
- 남아프리카공화국에서 Data Science Africa는 아프리칸스어, 줄루어부터 기타 언어까지 다양한 현지 언어를 지원하도록 구축된 NLP 모델을 개발하여 지역 기반 의료 시스템 내 다국어 요구 사항을 충족할 수 있는 위치에 배치합니다.
NLP Healthcare Life Science 시장 선도 기업
- 3M(미국)
- Cerner Corporation (미국)
- Nuance Communications Inc. (미국)
- Dolby Systems Inc. (미국)
- 마이크로소프트(미국)
- IBM(미국)
- Google LLC(Alphabet Inc.)(미국)
- Amazon 웹 서비스 주식회사(미국)
- Apixio Inc. (미국)
- 아베르비스(독일)
- 클리니싱크(미국)
- 렉살리틱스(미국)
- 내러티브 사이언스(미국)
- 존스노우 랩스(미국)
- BenevolentAI(영국)
NLP Healthcare Life Science 시장 최근 동향
- 2024년 2월, Persistent Systems는 Microsoft와 협력하여 생성 AI로 구동되는 새로운 PHM 솔루션을 출시했습니다. 가치 기반 치료 모델을 뒷받침하기 위해 개발된 이 고급 솔루션은 SDOH를 사용하여 비임상적 환자 요구를 측정합니다. 그 결과, 여러 임상적 상태에서 의료비 지출에 대한 예측 분석의 정확성을 강화합니다.
- 2023년 6월, 가치 기반 의료를 위한 인공지능 솔루션 분야의 선두주자인 Apixio는 건강 보험에 대한 선불 청구 정확성을 개선하는 전문성으로 유명한 기술 회사인 ClaimLogiq와 합병을 완료했습니다. 새로 합병된 법인은 Apixio라는 이름으로 불리며 즉시 의료 데이터 및 분석 분야에서 가장 크고 지배적인 기업 중 하나가 될 것입니다. 이 전략적 합병은 Apixio의 고급 AI와 ClaimLogiq의 청구 처리 정확성을 결합하여 포괄적인 통찰력과 솔루션을 제공하기 위한 강력한 플랫폼을 만듭니다. 새로운 Apixio는 데이터 정확성을 개선하고, 비용 예측의 최적화를 가져오고, 보다 효과적인 가치 기반 치료 전략을 추진하여 의료 관리에 혁신을 일으키고자 합니다. 이는 의료 분석 산업의 새로운 표준입니다.
DBMR의 자연어 처리 NLP 헬스케어 생명 과학 시장에 대한 시장 보고서는 여러 가지 중요한 비즈니스 결정을 내리는 데 도움이 될 수 있는 귀중한 통찰력을 제공합니다. 당사의 보고서와 연구 전문성을 바탕으로 귀사의 비즈니스를 위한 현실적인 성장 전략을 수립할 수 있습니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.