글로벌 인공지능(AI) 기반 임상 시험 시장 – 2029년까지의 산업 동향 및 예측

TOC 요청 TOC 요청 분석가에게 문의 분석가에게 문의 무료 샘플 보고서 무료 샘플 보고서 구매하기 전에 문의 구매하기 전에 문의 지금 구매 지금 구매

글로벌 인공지능(AI) 기반 임상 시험 시장 – 2029년까지의 산업 동향 및 예측

  • Healthcare
  • Upcoming Report
  • Jul 2022
  • Global
  • 350 Pages
  • 테이블 수: 220
  • 그림 수: 60

Global Artificial Intelligence Ai Based Clinical Trials Market

시장 규모 (USD 10억)

연평균 성장률 :  % Diagram

Chart Image USD 1.30 Billion USD 5.55 Billion 2021 2029
Diagram 예측 기간
2022 –2029
Diagram 시장 규모(기준 연도)
USD 1.30 Billion
Diagram 시장 규모(예측 연도)
USD 5.55 Billion
Diagram 연평균 성장률
%
Diagram주요 시장 플레이어
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

글로벌 인공지능(AI) 기반 임상 시험 시장, 임상 시험 단계(1상, 2상, 3상), 응용 분야(종양학, 심혈관 질환, 신경 질환 또는 상태, 감염성 질환 , 기타), 최종 사용(제약 회사, 학계, 기타) - 2029년까지의 산업 동향 및 예측

인공지능(AI) 기반 임상 시험 시장

시장 분석 및 규모

인공지능(AI) 기반 임상 시험 시장은 향후 5년 동안 21.7% 확대될 것입니다. AI 기반 임상 시험에 대한 수요는 곧 견고한 회복을 보일 것으로 예상되며 장기적으로 유리하게 확대될 것입니다. 가까운 미래에 인공지능(AI) 기반 임상 시험 시장 사업은 보람 있는 기회를 제공할 것입니다.

Data Bridge Market Research는 2021년에 13억 달러였던 인공지능(AI) 기반 임상 시험 시장이 2029년까지 55억 5천만 달러로 급증할 것으로 분석했으며, 2022년부터 2029년까지 예측 기간 동안 19.90%의 CAGR을 보일 것으로 예상합니다. Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 환자 역학, 파이프라인 분석, 가격 분석, 규제 프레임워크가 포함되어 있습니다.

보고 범위 및 시장 세분화

보고서 메트릭

세부

예측 기간

2022년부터 2029년까지

기준 연도

2021

역사적 연도

2020 (2014-2019로 사용자 정의 가능)

양적 단위

매출은 10억 달러, 볼륨은 단위, 가격은 10억 달러

다루는 세그먼트

임상 시험 단계(1상, 2상, 3상), 응용 분야(종양학, 심혈관 질환, 신경 질환 또는 상태, 감염성 질환, 기타), 최종 사용(제약 회사, 학계, 기타)

적용 국가

미국, 캐나다 및 멕시코(북미), 독일, 프랑스, ​​영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양(APAC), 사우디 아라비아, UAE, 남아프리카, 이집트, 이스라엘, 중동 및 아프리카(MEA)의 일부인 기타 중동 및 아프리카(MEA), 브라질, 아르헨티나 및 남미의 일부인 기타 남미

시장 참여자 포함

Phesi(인도), CONSILX(싱가포르), DEEP LENS Inc.(미국), Unlearn.AI, Inc.(미국), Saama Technologies, LLC(미국), Antidote Technologies, Inc.(영국), Innoplexus(독일), Mendel.ai(미국), Median Technologies(프랑스), Symphony AI(미국), BioAge Labs, Inc.(미국), AiCure(미국), Halo Health Systems(미국)

시장 기회

AI는 의료 데이터의 편향을 줄이는 데에도 사용될 수 있습니다.

제약 회사들은 임상 시험에 AI 기반 기술을 적극적으로 도입하고 있습니다.

시장 정의

인공지능은 질병을 식별하고, 의료 서비스를 제공하고, 심지어 새로운 치료법을 개발하는 데 사용될 수 있으며, 임상 시험을 개선할 수도 있습니다. AI의 규모와 속도는 인간 활동에만 의존하는 모든 시스템보다 훨씬 뛰어납니다. 여러 면에서 이것이 앞으로 가장 큰 문제가 될 것입니다. 아직 완전히 자율적으로 실행될 수 있는 AI 수준에 도달하지 못했기 때문입니다.

인공지능(AI) 기반 임상 시험 시장 역학

운전자

  • 연구 개발 활동 확대

최근 몇 년 동안 공공 및 민간 부문의 수많은 조직이 치료 분야와 관련된 다양한 R&D 활동을 지원하기 위한 노력을 강화했습니다. 앞으로 몇 년 동안 이러한 측면이 AI 기반 임상 시험 시장에서 새로운 성장 기회를 열어줄 것으로 예상됩니다.

  • 기술 발전

AI 기반 임상 시험의 글로벌 시장에서 여러 회사가 R&D에 상당한 투자를 하고 있습니다. 이전은 신제품 개발 및 궁극적으로 신제품 출시와 관련된 업무를 수행하는 데 도움이 됩니다. 이러한 요인으로 인해 AI 기반 임상 시험 제공자 시장은 앞으로 몇 년 동안 유망한 속도로 성장할 것으로 예상됩니다.

  • AI 기반 플랫폼 사용 증가

AI 기반 플랫폼의 사용이 증가함에 따라 다양한 단계에서 시험의 효율성과 효능을 향상시키기 위한 AI 기반 임상 시험 시장이 주도되고 있습니다. 시장 확장을 촉진하는 다른 이유 중 일부는 다양한 치료 분야에 대한 정부 및 민간 부문의 지원 활동을 포함합니다. 또한, 시장은 약물 시험 설계, 더 나은 환자 선택, 위치 선택, 환자 모니터링 등과 같은 임상 시험에서 AI의 응용 프로그램에 대한 인식이 증가함에 따라 지원되고 있습니다.

기회

AI는 또한 의료 데이터의 편향을 줄이는 데 사용될 수 있습니다. 예를 들어, 제넨텍과 스탠포드 대학은 약물 연구의 편향에 맞서기 위해 오픈소스 AI 시스템을 개발하기 위해 협력했습니다. 또한, 저명한 제약 회사는 임상 시험에 AI 기반 기술을 대거 통합하고 있으며, 이는 시장 성장에 도움이 되고 있습니다. 이는 오래된 절차에서 벗어나 기술 기반 접근 방식으로 이동하는 추세 때문입니다.

제약/도전

반면, 약물 개발 및 유통과 관련된 높은 비용은 시장 성장률을 방해할 것입니다.

이 인공지능(AI) 기반 임상 시험 시장 보고서는 최근의 새로운 개발, 무역 규정, 수출입 분석, 생산 분석, 가치 사슬 최적화, 시장 점유율, 국내 및 지역 시장 참여자의 영향, 새로운 수익 주머니, 시장 규정의 변화, 전략적 시장 성장 분석, 시장 규모, 범주 시장 성장, 응용 분야 틈새 시장 및 지배력, 제품 승인, 제품 출시, 지리적 확장, 시장의 기술 혁신에 대한 분석 기회를 제공합니다. 인공지능(AI) 기반 임상 시험 시장에 대한 자세한 정보를 얻으려면 Data Bridge Market Research에 연락하여 분석가 브리핑을 받으세요. 저희 팀은 시장 성장을 달성하기 위한 정보에 입각한 시장 결정을 내리는 데 도움을 드립니다.

COVID-19가 인공지능(AI) 기반 임상 시험 시장에 미치는 영향

COVID-19 팬데믹은 AI 기반 기술 사용의 증가에 기여했습니다. AI 기반 약물 연구 및 약물 시험 솔루션 사용이 증가한 한 가지 이유는 기술적으로 향상된 약물 발견 및 개발 솔루션의 채택 증가와 모집된 환자 데이터 분석입니다. 임상 결과를 개선하고 약물 시험에 필요한 비용과 시간을 줄이기 위해 제약 회사, CRO 및 학계는 기존 약물 개발 프로세스에서 벗어나 AI 기반 솔루션으로 관심을 돌렸습니다. 분산형 약물 시험도 COVID-19 시험 중단의 결과를 보였으며, 이로 인해 여러 주요 업체가 환자 데이터 수집에 집중하게 되었습니다.

글로벌 인공지능(AI) 기반 임상 시험 시장 범위

인공지능(AI) 기반 임상 시험 시장은 임상 시험 단계, 응용 프로그램 및 최종 사용자를 기준으로 세분화됩니다. 이러한 세그먼트 간의 성장은 산업의 빈약한 성장 세그먼트를 분석하고 사용자에게 핵심 시장 응용 프로그램을 식별하기 위한 전략적 결정을 내리는 데 도움이 되는 귀중한 시장 개요와 시장 통찰력을 제공하는 데 도움이 됩니다.

임상 시험 단계
 

  • 1단계
  • 2단계
  • 3단계

애플리케이션

  • 종양학
  • 심혈관 질환
  • 신경계 질환 또는 상태
  • 감염성 질환
  • 기타

최종 사용자

  • 제약 회사
  • 학계
  • 기타

인공지능(AI) 기반 임상 시험 시장 지역 분석/통찰력

위에 언급된 대로, 인공지능(AI) 기반 임상 시험 시장을 분석하고, 국가, 임상 시험 단계, 응용 분야 및 최종 사용자별로 시장 규모에 대한 통찰력과 추세를 제공합니다.

인공지능(AI) 기반 임상 시험 시장 보고서에서 다루는 국가는 다음과 같습니다. 북미의 미국, 캐나다 및 멕시코, 유럽의 독일, 프랑스, ​​영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽 국가, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양 국가(APAC), 사우디 아라비아, UAE, 남아프리카 공화국, 이집트, 이스라엘, 중동 및 아프리카(MEA)의 일부인 기타 중동 및 아프리카(MEA), 남아메리카의 일부인 기타 남아메리카.

북미는 인공지능(AI) 기반 임상 시험 시장을 지배하고 있습니다. 이러한 성장은 이 지역에서 수행되는 임상 시험 수의 급증을 포함한 여러 요인에 기인할 수 있습니다.

아시아 태평양 지역은 AI 기반 도구의 보급 증가와 다양한 의료 분야에서 AI 도입을 위한 정부 이니셔티브에 호의적인 태도로 인해 예측 기간 동안 수익성 있는 성장을 보일 것으로 예상됩니다.

보고서의 국가 섹션은 또한 개별 시장 영향 요인과 국내 시장의 현재 및 미래 트렌드에 영향을 미치는 규제 변화를 제공합니다. 다운스트림 및 업스트림 가치 사슬 분석, 기술 트렌드 및 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드와의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세 및 무역 경로의 영향은 국가 데이터에 대한 예측 분석을 제공하는 동안 고려됩니다.

의료 인프라 성장 설치 기반 및 신기술 침투

인공지능(AI) 기반 임상 시험 시장은 또한 모든 국가에 대한 자세한 시장 분석을 제공합니다. 자본 장비에 대한 의료 지출 증가, AI 기반 임상 시험 시장을 위한 다양한 종류의 제품 설치 기반, 수명선 곡선을 사용하는 기술의 영향, 의료 규제 시나리오의 변화 및 인공지능(AI) 기반 임상 시험 시장에 미치는 영향. 이 데이터는 2010-2020년의 과거 기간에 대해 제공됩니다.

경쟁 환경 및 인공지능(AI) 기반 임상 시험 시장 점유율 분석

인공 지능(AI) 기반 임상 시험 시장 경쟁 구도는 경쟁자별 세부 정보를 제공합니다. 포함된 세부 정보에는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 응용 프로그램 지배력이 있습니다. 위에 제공된 데이터 포인트는 인공 지능(AI) 기반 임상 시험 시장과 관련된 회사의 초점에만 관련이 있습니다.

인공지능(AI) 기반 임상 시험 시장에서 활동하는 주요 기업은 다음과 같습니다.

  • 페시(인도)
  • CONSILX(싱가포르)
  • DEEP LENS Inc. (미국)
  • 언러닝.AI 주식회사 (미국)
  • Saama Technologies, LLC(미국)
  • Antidote Technologies, Inc. (영국)
  • 이노플렉서스(독일)
  • 멘델.에이아이(미국)
  • Median Technologies (프랑스)
  • 심포니 AI(미국)
  • BioAge Labs, Inc. (미국)
  • AiCure(미국)
  • Halo Health Systems (미국)


SKU-

세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요

  • 대화형 데이터 분석 대시보드
  • 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
  • 사용자 정의 및 질의를 위한 리서치 분석가 액세스
  • 대화형 대시보드를 통한 경쟁자 분석
  • 최신 뉴스, 업데이트 및 추세 분석
  • 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
데모 요청

목차

1. INTRODUCTION

 

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI)-BASED CLINICAL TRIALS MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

 

2. MARKET SEGMENTATION

 

2.1 KEY TAKEAWAYS

2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI)-BASED CLINICAL TRIALS MARKET

 

2.2.1 VENDOR POSITIONING GRID

2.2.2 TECHNOLOGY LIFE LINE CURVE

2.2.3 MARKET GUIDE

2.2.4 COMAPANY MARKET SHARE ANALYSIS

2.2.5 MULTIVARIATE MODELLING

2.2.6 TOP TO BOTTOM ANALYSIS 

2.2.7 STANDARDS OF MEASUREMENT

2.2.8 VENDOR SHARE ANALYSIS

2.2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS

2.2.10 DATA POINTS FROM KEY SECONDARY DATABASES

 

2.3 GLOBAL ARTIFICIAL INTELLIGENCE (AI)-BASED CLINICAL TRIALS MARKET: RESEARCH SNAPSHOT

2.4 ASSUMPTIONS

 

3. MARKET OVERVIEW

 

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

 

4. EXECUTIVE SUMMARY

 

5. PREMIUM INSIGHTS

 

5.1 PESTEL ANALYSIS

5.2 PORTER’S FIVE FORCES MODEL

6. INDUSTRY INSIGHTS

 

6.1 MICRO AND MACRO ECONOMIC FACTORS

6.2 PENETRATION AND GROWTH PROSPECT MAPPING

6.3 KEY PRICING STRATEGIES

6.4 INTERVIEWS WITH SPECIALIST

6.5 ANALYIS AND RECOMMENDATION

 

7. INTELLECTUAL PROPERTY (IP) PORTFOLIO

 

7.1 PATENT QUALITY AND STRENGTH

7.2 PATENT FAMILIES

7.3 LICENSING AND COLLABORATIONS

7.4 COMPETITIVE LANDSCAPE

7.5 IP STRATEGY AND MANAGEMENT

7.6 OTHER

 

8. COST ANALYSIS BREAKDOWN

 

9. TECHNONLOGY ROADMAP

 

10. INNOVATION TRACKER AND STRATEGIC ANALYSIS

 

10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS

 

10.1.1 JOINT VENTURES

10.1.2 MERGERS AND ACQUISITIONS

10.1.3 LICENSING AND PARTNERSHIP

10.1.4 TECHNOLOGY COLLABORATIONS

10.1.5 STRATEGIC DIVESTMENTS

 

10.2 NUMBER OF PRODUCTS IN DEVELOPMENT

10.3 STAGE OF DEVELOPMENT

10.4 TIMELINES AND MILESTONES

10.5 INNOVATION STRATEGIES AND METHODOLOGIES

10.6 RISK ASSESSMENT AND MITIGATION

10.7 FUTURE OUTLOOK

 

11. REGULATORY COMPLIANCE

 

11.1 REGULATORY AUTHORITIES

11.2 REGULATORY CLASSIFICATIONS

 

11.2.1 CLASS I

11.2.2 CLASS II

11.2.3 CLASS III

 

11.3 REGULATORY SUBMISSIONS

11.4 INTERNATIONAL HARMONIZATION

11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS

11.6 REGULATORY CHALLENGES AND STRATEGIES

 

12. REIMBURSEMENT FRAMEWORK

 

13. OPPUTUNITY MAP ANALYSIS

 

14. VALUE CHAIN ANALYSIS

 

15. HEALTHCARE ECONOMY

 

15.1 HEALTHCARE EXPENDITURE

15.2 CAPITAL EXPENDITURE

15.3 CAPEX TRENDS

15.4 CAPEX ALLOCATION

15.5 FUNDING SOURCES

15.6 INDUSTRY BENCHMARKS

15.7 GDP RATION IN OVERALL GDP

15.8 HEALTHCARE SYSTEM STRUCTURE

15.9 GOVERNMENT POLICIES

15.10 ECONOMIC DEVELOPMENT

 

16. GLOBAL ARTIFICIAL INTELLIGENCE (AI)-BASED CLINICAL TRIALS MARKET, BY OFFERING

 

16.1 OVERVIEW

16.2 SOFTWARE

 

16.2.1 BY DEPLOYMENT MODE

 

16.2.1.1. CLOUD

16.2.1.2. ON-PREMISES

 

16.2.2 BY TYPE

 

16.2.2.1. STANDALONE

16.2.2.2. INTEGRATED

 

16.3 SERVICES

 

16.3.1 DEPLOYMENT & INTEGRATION

16.3.2 SUPPORT & MAINTENANCE

17. GLOBAL ARTIFICIAL INTELLIGENCE (AI)-BASED CLINICAL TRIALS MARKET, BY TECHNOLOGY

 

17.1 OVERVIEW

17.2 MACHINE LEARNING

 

17.2.1 DEEP LEARNING

 

17.2.1.1. CONVOLUTIONAL NEURAL NETWORK (CNN)

17.2.1.2. RECURRENT NEURAL NETWORK (RNN)

17.2.1.3. GENERATIVE ADVERSARIAL NETWORKS (GAN)

 

17.2.2 SUPERVISED LEARNING

17.2.3 REINFORCEMENT LEARNING

17.2.4 UNSUPERVISED LEARNING

 

17.3 NATURAL LANGUAGE PROCESSING

 

17.3.1 IVR

17.3.2 OCR

17.3.3 PATTERN & IMAGE RECOGNITION

17.3.4 AUTO CODING

17.3.5 CLASSIFICATION & CATEGORIZATION

17.3.6 TEXT ANALYTICS

17.3.7 SPEECH ANALYTICS

 

17.4 CONTEXT-AWARENESS COMPUTING

 

17.4.1 DEVICE CONTEXT

17.4.2 USER CONTEXT

17.4.3 PHYSICAL CONTEXT

 

17.5 COMPUTER VISION

17.6 OTHERS

 

18. GLOBAL ARTIFICIAL INTELLIGENCE (AI)-BASED CLINICAL TRIALS MARKET, BY PHASE

 

18.1 OVERVIEW

18.2 PHASE I

18.3 PHASE II

18.4 PHASE III

18.5 PHASE IV

 

19. GLOBAL ARTIFICIAL INTELLIGENCE (AI)-BASED CLINICAL TRIALS MARKET, BY TRIAL DESIGN

 

19.1 OVERVIEW

19.2 INTERVENTIONAL

19.3 TREATMENT

19.4 OBSERVATIONAL

19.5 EXPANDED ACCESS

 

20. GLOBAL ARTIFICIAL INTELLIGENCE (AI)-BASED CLINICAL TRIALS MARKET, BY APPLICATION

 

20.1 OVERVIEW

20.2 ONCOLOGY

20.3 NEUROLOGY DISEASES AND CONDITIONS

20.4 CARDIOVASCULAR DISEASES

20.5 METABOLIC DISEASES

20.6 INFECTIOUS DISEASES

20.7 IMMUNOLOGY DISEASES

20.8 OTHERS

 

21. GLOBAL ARTIFICIAL INTELLIGENCE (AI)-BASED CLINICAL TRIALS MARKET, BY END USER

 

21.1 OVERVIEW

21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES

 

21.2.1 BY OFFERING

 

21.2.1.1. SOFTWARE

21.2.1.2. SERVICES

 

21.3 CONTRACT RESEARCH ORGANIZATIONS

 

21.3.1 BY OFFERING

21.3.1.1. SOFTWARE

21.3.1.2. SERVICES

 

21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES

 

21.4.1 BY OFFERING

21.4.1.1. SOFTWARE

21.4.1.2. SERVICES

 

21.5 OTHERS

 

22. GLOBAL ARTIFICIAL INTELLIGENCE (AI)-BASED CLINICAL TRIALS MARKET, BY GEOGRAPHY

 

22.1 GLOBAL ARTIFICIAL INTELLIGENCE (AI)-BASED CLINICAL TRIALS MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)

 

22.1.1 NORTH AMERICA

 

22.1.1.1. U.S.

22.1.1.2. CANADA

22.1.1.3. MEXICO

22.1.2 EUROPE

 

22.1.2.1. GERMANY

22.1.2.2. FRANCE

22.1.2.3. U.K.

22.1.2.4. ITALY

22.1.2.5. SPAIN

22.1.2.6. RUSSIA

22.1.2.7. TURKEY

22.1.2.8. BELGIUM

22.1.2.9. NETHERLANDS

22.1.2.10. NORWAY

22.1.2.11. FINLAND

22.1.2.12. SWITZERLAND

22.1.2.13. DENMARK

22.1.2.14. SWEDEN

22.1.2.15. POLAND

22.1.2.16. REST OF EUROPE

 

22.1.3 ASIA PACIFIC

 

22.1.3.1. JAPAN

22.1.3.2. CHINA

22.1.3.3. SOUTH KOREA

22.1.3.4. INDIA

22.1.3.5. AUSTRALIA 

22.1.3.6. NEW ZEALAND

22.1.3.7. SINGAPORE

22.1.3.8. THAILAND

22.1.3.9. MALAYSIA

22.1.3.10. INDONESIA

22.1.3.11. PHILIPPINES

22.1.3.12. TAIWAN

22.1.3.13. VIETNAM

22.1.3.14. REST OF ASIA PACIFIC

 

22.1.4 SOUTH AMERICA

 

22.1.4.1. BRAZIL

22.1.4.2. ARGENTINA

22.1.4.3. REST OF SOUTH AMERICA

 

22.1.5 MIDDLE EAST AND AFRICA

 

22.1.5.1. SOUTH AFRICA

22.1.5.2. EGYPT

22.1.5.3. SAUDI ARABIA

22.1.5.4. U.A.E

22.1.5.5. OMAN

22.1.5.6. BAHRAIN

22.1.5.7. ISRAEL

22.1.5.8. KUWAIT

22.1.5.9. QATAR

22.1.5.10. REST OF MIDDLE EAST AND AFRICA

 

22.2 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES

 

23. GLOBAL ARTIFICIAL INTELLIGENCE (AI)-BASED CLINICAL TRIALS MARKET,COMPANY LANDSCAPE

 

23.1 COMPANY SHARE ANALYSIS: GLOBAL

23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA

23.3 COMPANY SHARE ANALYSIS: EUROPE

23.4 COMPANY SHARE ANALYSIS: ASIA PACIFIC

23.5 COMPANY SHARE ANALYSIS: MIDDLE EAST AND AFRICA

23.6 MERGERS & ACQUISITIONS

23.7 NEW PRODUCT DEVELOPMENT AND APPROVALS

23.8 EXPANSIONS

23.9 REGULATORY CHANGES

23.10 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS

 

24. GLOBAL ARTIFICIAL INTELLIGENCE (AI)-BASED CLINICAL TRIALS MARKET, SWOT & DBMR ANALYSIS

 

25. GLOBAL ARTIFICIAL INTELLIGENCE (AI)-BASED CLINICAL TRIALS MARKET, COMPANY PROFILE

 

25.1 PHESI

 

25.1.1 COMPANY SNAPSHOT

25.1.2 REVENUE ANALYSIS

25.1.3 GEOGRAPHIC PRESENCE

25.1.4 PRODUCT PORTFOLIO

25.1.5 RECENT DEVELOPMENT

 

25.2 MEDIDATA (A PART OF DASSAULT SYSTÈMES)

 

25.2.1 COMPANY SNAPSHOT

25.2.2 REVENUE ANALYSIS

25.2.3 GEOGRAPHIC PRESENCE

25.2.4 PRODUCT PORTFOLIO

25.2.5 RECENT DEVELOPMENT

25.3 IQVIA INC

 

25.3.1 COMPANY SNAPSHOT

25.3.2 REVENUE ANALYSIS

25.3.3 GEOGRAPHIC PRESENCE

25.3.4 PRODUCT PORTFOLIO

25.3.5 RECENT DEVELOPMENT

 

25.4 RENALYTIX

 

25.4.1 COMPANY SNAPSHOT

25.4.2 REVENUE ANALYSIS

25.4.3 GEOGRAPHIC PRESENCE

25.4.4 PRODUCT PORTFOLIO

25.4.5 RECENT DEVELOPMENT

 

25.5 PARADIGM HEALTH, INC (DEEP LENS)

 

25.5.1 COMPANY SNAPSHOT

25.5.2 REVENUE ANALYSIS

25.5.3 GEOGRAPHIC PRESENCE

25.5.4 PRODUCT PORTFOLIO

25.5.5 RECENT DEVELOPMENT

 

25.6 UNLEARN.AI, INC. 

 

25.6.1 COMPANY SNAPSHOT

25.6.2 REVENUE ANALYSIS

25.6.3 GEOGRAPHIC PRESENCE

25.6.4 PRODUCT PORTFOLIO

25.6.5 RECENT DEVELOPMENT

25.7 SAAMA TECHNOLOGIES, INC.

 

25.7.1 COMPANY SNAPSHOT

 

25.7.2 REVENUE ANALYSIS

25.7.3 GEOGRAPHIC PRESENCE

25.7.4 PRODUCT PORTFOLIO

25.7.5 RECENT DEVELOPMENT

 

25.8 INNOPLEXUS

 

25.8.1 COMPANY SNAPSHOT

25.8.2 REVENUE ANALYSIS

25.8.3 GEOGRAPHIC PRESENCE

25.8.4 PRODUCT PORTFOLIO

25.8.5 RECENT DEVELOPMENT

25.9 MENDEL.AI

 

25.9.1 COMPANY SNAPSHOT

25.9.2 REVENUE ANALYSIS

25.9.3 GEOGRAPHIC PRESENCE

25.9.4 PRODUCT PORTFOLIO

25.9.5 RECENT DEVELOPMENT

 

25.10 MEDIAN TECHNOLOGIES

 

25.10.1 COMPANY SNAPSHOT

25.10.2 REVENUE ANALYSIS

25.10.3 GEOGRAPHIC PRESENCE

25.10.4 PRODUCT PORTFOLIO

25.10.5 RECENT DEVELOPMENT

 

25.11 IBM

 

25.11.1 COMPANY SNAPSHOT

25.11.2 REVENUE ANALYSIS

25.11.3 GEOGRAPHIC PRESENCE

25.11.4 PRODUCT PORTFOLIO

25.11.5 RECENT DEVELOPMENT

 

25.12 EXSCIENTIA

 

25.12.1 COMPANY SNAPSHOT

25.12.2 REVENUE ANALYSIS

25.12.3 GEOGRAPHIC PRESENCE

25.12.4 PRODUCT PORTFOLIO

25.12.5 RECENT DEVELOPMENT

 

25.13 PAREXEL INTERNATIONAL CORPORATION (PARTNER WITH PARTEX )

 

25.13.1 COMPANY SNAPSHOT

25.13.2 REVENUE ANALYSIS

25.13.3 GEOGRAPHIC PRESENCE

25.13.4 PRODUCT PORTFOLIO

25.13.5 RECENT DEVELOPMENT

 

25.14 INSILICO MEDICINE

 

25.14.1 COMPANY SNAPSHOT

25.14.2 REVENUE ANALYSIS

25.14.3 GEOGRAPHIC PRESENCE

25.14.4 PRODUCT PORTFOLIO

25.14.5 RECENT DEVELOPMENT

25.15 INTEL CORPORATION

 

25.15.1 COMPANY SNAPSHOT

25.15.2 REVENUE ANALYSIS

25.15.3 GEOGRAPHIC PRESENCE

25.15.4 PRODUCT PORTFOLIO

25.15.5 RECENT DEVELOPMENT

 

25.16 AICURE

 

25.16.1 COMPANY SNAPSHOT

25.16.2 REVENUE ANALYSIS

25.16.3 GEOGRAPHIC PRESENCE

25.16.4 PRODUCT PORTFOLIO

25.16.5 RECENT DEVELOPMENT

 

25.17 CONCERTAI

 

25.17.1 COMPANY SNAPSHOT

25.17.2 REVENUE ANALYSIS

25.17.3 GEOGRAPHIC PRESENCE

25.17.4 PRODUCT PORTFOLIO

25.17.5 RECENT DEVELOPMENT

 

25.18 NURITAS LTD. 

 

25.18.1 COMPANY SNAPSHOT

25.18.2 REVENUE ANALYSIS

25.18.3 GEOGRAPHIC PRESENCE

25.18.4 PRODUCT PORTFOLIO

25.18.5 RECENT DEVELOPMENT

 

25.19 BULLFROG AI HOLDINGS, INC.

 

25.19.1 COMPANY SNAPSHOT

25.19.2 REVENUE ANALYSIS

25.19.3 GEOGRAPHIC PRESENCE

25.19.4 PRODUCT PORTFOLIO

25.19.5 RECENT DEVELOPMENT

 

25.20 VIZ.AI

 

25.20.1 COMPANY SNAPSHOT

25.20.2 REVENUE ANALYSIS

25.20.3 GEOGRAPHIC PRESENCE

25.20.4 PRODUCT PORTFOLIO

25.20.5 RECENT DEVELOPMENT

25.21 TRINETX, LLC

 

25.21.1 COMPANY SNAPSHOT

25.21.2 REVENUE ANALYSIS

25.21.3 GEOGRAPHIC PRESENCE

25.21.4 PRODUCT PORTFOLIO

25.21.5 RECENT DEVELOPMENT

 

25.22 CLINITHINK

 

25.22.1 COMPANY SNAPSHOT

25.22.2 REVENUE ANALYSIS

25.22.3 GEOGRAPHIC PRESENCE

25.22.4 PRODUCT PORTFOLIO

25.22.5 RECENT DEVELOPMENT

 

25.23 VEEVA SYSTEMS

 

25.23.1 COMPANY SNAPSHOT

25.23.2 REVENUE ANALYSIS

25.23.3 GEOGRAPHIC PRESENCE

25.23.4 PRODUCT PORTFOLIO

25.23.5 RECENT DEVELOPMENT

 

25.24 CLARIO

 

25.24.1 COMPANY SNAPSHOT

25.24.2 REVENUE ANALYSIS

25.24.3 GEOGRAPHIC PRESENCE

25.24.4 PRODUCT PORTFOLIO

25.24.5 RECENT DEVELOPMENT

 

25.25 NFERENCE, INC

 

25.25.1 COMPANY SNAPSHOT

25.25.2 REVENUE ANALYSIS

25.25.3 GEOGRAPHIC PRESENCE

25.25.4 PRODUCT PORTFOLIO

25.25.5 RECENT DEVELOPMENT

 

25.26 TRIALS.AI

 

25.26.1 COMPANY SNAPSHOT

25.26.2 REVENUE ANALYSIS

25.26.3 GEOGRAPHIC PRESENCE

25.26.4 PRODUCT PORTFOLIO

25.26.5 RECENT DEVELOPMENT

25.27 RISKLICK.CH

 

25.27.1 COMPANY SNAPSHOT

25.27.2 REVENUE ANALYSIS

25.27.3 GEOGRAPHIC PRESENCE

25.27.4 PRODUCT PORTFOLIO

25.27.5 RECENT DEVELOPMENT

 

25.28 UNLEARN.AI, INC

 

25.28.1 COMPANY SNAPSHOT

25.28.2 REVENUE ANALYSIS

25.28.3 GEOGRAPHIC PRESENCE

25.28.4 PRODUCT PORTFOLIO

25.28.5 RECENT DEVELOPMENT

 

NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST

 

26. CONCLUSION

 

27. QUESTIONNAIRE

 

28. RELATED REPORTS

 

29. ABOUT DATA BRIDGE MARKET RESEARCH

자세한 정보 보기 Right Arrow

연구 방법론

데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.

DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.

사용자 정의 가능

Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

자주 묻는 질문

The artificial intelligence (AI)-based clinical trials market size will be worth USD 5.55 billion by 2029.
The growth rate of the artificial intelligence (AI)-based clinical trials market is 19.90% in the forecast by 2029.
Increasing research and development activities, technological developments & growing usage of AI-based platforms are the growth drivers of the artificial intelligence (AI)-based clinical trials market.
Major companies in the artificial intelligence (AI)-based clinical trials market are Phesi (India), CONSILX (Singapore), DEEP LENS Inc. (U.S.), Unlearn.AI, Inc. (U.S.), Saama Technologies, LLC (U.S.), Antidote Technologies, Inc. (U.K.), Innoplexus (Germany), Mendel.ai (U.S.), Median Technologies (France), Symphony AI (U.S.), BioAge Labs, Inc. (U.S.), AiCure (U.S.), Halo Health Systems (U.S.).
Clinical trial phase, application, and end-user are the factors on which the artificial intelligence (AI)-based clinical trials market research is based.
Testimonial