Global Predictive Maintenance Market
시장 규모 (USD 10억)
연평균 성장률 :
%

![]() |
2024 –2031 |
![]() |
USD 6.72 Billion |
![]() |
USD 63.09 Billion |
![]() |
|
![]() |
|
Global Predictive Maintenance Market Segmentation, By Components (Solution and Services), Deployment Mode (Cloud and On-Premise), Organization Size (Large Enterprises and Small and Medium-Sized Enterprises), Vertical (Manufacturing, Energy and Utilities, Transportation, Government, Healthcare, Aerospace and Defense, and Others), Stakeholder (MRO, OEM/ODM, and Technology Integrators) – Industry Trends and Forecast to 2031
Predictive Maintenance Market Analysis
Predictive maintenance has emerged as a transformative approach in industrial operations, leveraging advancements in data analytics, IoT, and AI to improve equipment reliability and reduce downtime. Unlike traditional preventive maintenance, which follows set schedules, predictive maintenance relies on real-time data to assess equipment health and forecast potential failures. This shift enables companies to act only when necessary, optimizing resources and extending asset life. Advancements in IoT sensors and machine learning algorithms are crucial to predictive maintenance's success, allowing continuous monitoring of equipment and early detection of performance anomalies. Sensors gather real-time data on parameters such as temperature, vibration, and pressure, which is then analyzed using machine learning to identify patterns indicating wear or malfunction. Cloud computing further enhances this process, enabling data to be aggregated, processed, and analyzed at scale, providing valuable insights across large fleets of assets. Industries from manufacturing and energy to transportation have adopted predictive maintenance, seeing reduced maintenance costs and enhanced operational efficiency. As technologies continue to evolve, predictive maintenance is expected to become more accurate, scalable, and accessible, paving the way for smarter, data-driven asset management across diverse sectors.
Predictive Maintenance Market Size
The global predictive maintenance market size was valued at USD 6.72 billion in 2023 and is projected to reach USD 63.09 billion by 2031, with a CAGR of 32.30% during the forecast period of 2024 to 2031. In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.
Predictive Maintenance Market Trends
“Rise of Cloud-Based Predictive Maintenance Solutions”
예측 유지 관리 시장은 IoT, AI, 빅데이터 분석을 통합하여 자산 성능을 향상하고 가동 중단 시간을 줄임으로써 급속한 성장을 경험하고 있습니다. 이 시장을 형성하는 주요 추세 중 하나는 클라우드 기반 예측 유지 관리 솔루션의 부상입니다. 이러한 솔루션을 통해 기업은 종종 원격 위치에서 실시간으로 방대한 양의 장비 데이터를 수집하여 분석할 수 있으므로 조직이 고장이 발생하기 전에 고장을 예측하기가 더 쉬워집니다. 예를 들어, General Electric은 클라우드 기반 예측 유지 관리를 산업 장비에 통합하여 고객이 기계 상태를 지속적으로 모니터링하고 데이터 기반 유지 관리 결정을 내릴 수 있도록 했습니다. 이러한 접근 방식은 운영 효율성을 개선하고 유지 관리 비용을 절감합니다. 산업이 클라우드 기반 플랫폼을 계속 채택함에 따라 예측 유지 관리 시장이 확대될 것으로 예상되며 기업은 생산성을 높이고 자산 수명을 연장하기 위한 확장 가능하고 유연한 솔루션을 모색합니다.
보고서 범위 및 예측 유지 관리 시장 세분화
속성 |
예측 유지 관리 주요 시장 통찰력 |
다루는 세그먼트 |
|
적용 국가 |
미국, 캐나다 및 멕시코(북미), 독일, 프랑스, 영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양(APAC), 사우디 아라비아, UAE, 남아프리카, 이집트, 이스라엘, 중동 및 아프리카(MEA)의 일부인 기타 중동 및 아프리카(MEA), 브라질, 아르헨티나 및 남미의 일부인 기타 남미 |
주요 시장 참여자 |
Microsoft(미국), IBM(미국), SAP(독일), SAS Institute Inc.(미국), Software GmbH(독일), Cloud Software Group, Inc.(미국), Hewlett Packard Enterprise Development LP(미국), Altair Engineering Inc.(미국), Splunk LLC(미국), Oracle(미국), Google(미국), Amazon Web Services, Inc.(미국), General Electric Company(미국), Schneider Electric(프랑스), Hitachi, Ltd.(일본), PTC(미국), DINGO Software Pty. Ltd(호주) |
시장 기회 |
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석 및 유봉 분석이 포함되어 있습니다. |
예측 유지 관리 시장 정의
예측 유지 관리 소프트웨어 시스템은 작동 중 장비 또는 기계의 성능과 상태를 모니터링하는 데 사용됩니다. 이 소프트웨어는 고급 기술을 활용하여 고장이 발생하기 전에 유지 관리를 예약하여 장비의 안정성을 보장합니다. 예측 유지 관리 소프트웨어는 고조파 왜곡으로 인한 3상 전력 불균형 감지, 모터 커패시턴스 스파이크 식별, 베어링 결함으로 인한 과열 문제 파악 등 다양한 분야에 적용됩니다.
예측 유지 관리 시장 역학
운전자
- 귀중한 통찰력을 추출하기 위한 신기술 채택 증가
빅데이터 , M2M(Machine-to-Machine) 통신, 인공지능(AI) 의 지속적인 발전은 IoT 기기에서 생성된 방대한 양의 데이터에서 보다 심층적인 통찰력을 제공함으로써 예측 유지 관리 시장에서 상당한 성장을 촉진하고 있습니다. 이러한 기기는 센서, 카메라 및 기타 연결된 소스에서 엄청난 양의 데이터를 수집하며, 이를 실제 가치를 유지하려면 실행 가능한 정보로 변환해야 합니다. 빅데이터 처리 및 데이터 시각화 기술은 사용자가 일괄 처리 및 오프라인 분석을 통해 통찰력을 도출할 수 있도록 지원하는 반면, 실시간 데이터 해석은 확장성을 위해 점점 더 자동화에 의존하고 있습니다. AI는 IoT 생태계에서 생성된 방대한 양의 데이터를 분석하여 조직이 적시에 의사 결정을 내리는 데 사용할 수 있는 귀중한 통찰력으로 변환함으로써 중요한 역할을 합니다. 기업은 AI를 분석 모델에 통합함으로써 데이터 해석을 자동화하고 IoT 데이터 스트림에서 실시간으로 실행 가능한 통찰력을 얻을 수 있으며, 이는 산업 전반에 걸쳐 예측 유지 관리 솔루션을 위한 강력한 동인을 만들어냅니다.
- 전 세계적으로 증가하는 산업으로 인해 수요와 공급이 더욱 높아짐
전 세계적으로 산업이 늘어나면서 수요와 공급이 증가하고 있으며, 특히 산업화가 급속히 가속화되고 있는 신흥국에서 그렇습니다. 인도, 중국, 브라질과 같은 국가가 제조 및 기술 부문을 계속 확장함에 따라 예측 유지 관리와 같은 고급 솔루션에 대한 필요성이 커지고 있습니다. 예를 들어, 인도에서 자동차 및 제조 산업은 운영 효율성을 개선하고 가동 중단 시간을 줄이기 위해 예측 유지 관리 기술을 도입하여 이러한 솔루션에 대한 수요를 늘리고 있습니다. 신흥국에서 산업 활동이 급증하는 것은 기업이 성장하는 인프라를 관리하고 안정적인 운영을 보장하기 위한 확장 가능하고 비용 효율적인 도구를 찾고 있기 때문에 중요한 시장 동인입니다. 이러한 지역의 산업 기반이 확대됨에 따라 예측 유지 관리 소프트웨어 및 서비스에 대한 수요가 증가하여 공급업체가 이러한 증가하는 요구를 충족할 수 있는 상당한 기회가 생깁니다.
기회
- 사물인터넷(IoT)의 통합 증가
사물 인터넷(IoT)을 예측 유지 관리 솔루션에 통합함으로써 장비와 기계의 지속적이고 실시간 모니터링이 가능해지면서 시장 기회가 크게 확대되었습니다. 스마트 센서 및 스마트 미터와 같은 IoT 장치는 온도, 진동, 압력 및 습도와 같은 매개변수에 대한 방대한 양의 데이터를 수집합니다. 그런 다음 이 데이터는 고급 알고리즘과 머신 러닝 모델을 통해 분석되어 장비 고장이 발생하기 전에 잠재적인 고장을 예측합니다. 예를 들어, 제조 산업에서 IoT 지원 예측 유지 관리 시스템은 기계의 비정상적인 진동을 감지하여 고장으로 인해 생산이 중단되기 전에 유지 관리 팀에 수리를 수행하도록 경고할 수 있습니다. 자동차, 에너지 및 제조와 같은 산업에서 IoT를 채택하는 것이 증가함에 따라 IoT 기반 예측 유지 관리 솔루션에 대한 시장이 급성장했습니다. 이러한 수요는 IoT가 계획되지 않은 가동 중지 시간을 줄이고 장비 수명을 연장하며 수리 비용을 최소화할 수 있는 능력에 의해 더욱 증폭되어 IoT를 예측 유지 관리 시장의 핵심 동인으로 자리 매김하고 있습니다. 점점 더 많은 기업이 IoT 기기와 연결 시스템을 도입함에 따라, 견고하고 확장 가능한 예측 유지 관리 솔루션에 대한 필요성이 계속해서 증가할 것입니다. 이는 해당 분야의 기술 공급업체에게 수익성 있는 성장 기회가 될 것입니다.
- 비용 절감에 대한 강조 증가
예측 유지 관리(Predictive maintenance)는 예상치 못한 장비 고장을 최소화하고, 예비 부품 재고를 최적화하며, 노동 비용을 줄임으로써 기업에 매력적인 비용 절감 기회를 제공합니다. 데이터 기반 통찰력을 사용하여 장비 고장을 예상하고 예방함으로써 기업은 예상치 못한 고장과 관련된 비용이 많이 드는 가동 중지 시간과 값비싼 수리를 피할 수 있습니다. 예를 들어 운송 부문에서 예측 유지 관리 시스템은 차량 엔진 부품이 마모되는 시기를 예측하여 회사가 편리한 시간에 수리를 예약하고 비용이 많이 들고 방해가 되는 고장을 예방할 수 있습니다. 마찬가지로 제조에서 예측 유지 관리(Predictive maintenance)는 필요할 때만 부품을 주문하여 과잉 재고나 재고 부족을 방지함으로써 예비 부품 재고를 최적화하는 데 도움이 됩니다. 또한 비수요 시간에 유지 관리를 예약할 수 있으므로 비상 수리 팀과 초과 근무 노동의 필요성이 줄어들어 운영 비용을 절감할 수 있습니다. 이러한 비용 절감 잠재력은 산업 전반의 회사가 높은 수준의 효율성과 성과를 유지하면서 운영 비용을 줄일 수 있는 방법을 점점 더 모색함에 따라 중요한 시장 기회입니다. 이러한 재정적 이점으로 인해 예측적 유지 관리 솔루션에 대한 수요는 꾸준히 증가하고 있으며, 이는 시장의 솔루션 공급업체에게 강력한 성장 기회를 제공합니다.
제약/도전
- 숙련된 인력 부족
AI 기반 IoT 기술과 고급 소프트웨어 시스템을 구현하려면 이러한 새롭고 업그레이드된 시스템을 운영하고 관리하도록 훈련된 숙련된 근로자가 필요합니다. 그러나 산업은 필요한 전문 지식을 갖춘 고도로 숙련된 전문가가 부족합니다. 글로벌 제조업체가 예측 유지 관리 시스템을 도입함에 따라 숙련된 노동력에 대한 수요가 증가하고 있습니다. 기업은 사이버 보안 , 네트워킹 및 운영과 같은 분야에서 전문 지식을 개발하여 IoT 데이터를 효과적으로 활용하여 문제를 예측하고, 오류를 방지하고, 운영을 최적화하고, 제품 개발을 개선해야 합니다. 또한 IoT 시스템에 AI와 머신 러닝(ML)을 통합하면 운영 비용을 절감하는 데 중요한 역할을 할 것으로 예상됩니다. AI가 IoT에 통합됨에 따라 IoT 장치에서 생성된 방대한 양의 데이터를 처리하고 해석하여 실행 가능한 통찰력을 제공하는 데 특화된 데이터 분석가 팀에 대한 필요성이 증가할 것입니다.
- 정기적인 유지관리 및 시스템 업그레이드 필요
높은 비용과 투자 요구 사항은 조직이 고급 예측 유지 관리 솔루션을 구현할 때 종종 상당한 재정적 장벽에 직면하기 때문에 예측 유지 관리 시장에서 상당한 과제를 제기합니다. 생체 인식 시스템 및 인공 지능 과 같은 정교한 기술을 통합 하려면 소프트웨어와 하드웨어 모두에 상당한 초기 투자가 필요할 수 있습니다. 예를 들어, 조직 전체에 포괄적인 예측 유지 관리 시스템을 배포하는 데는 수십만 달러의 비용이 들 수 있으며, 이는 소규모 기업이나 예산이 부족한 기업에게는 금지될 수 있습니다. 게다가 이러한 시스템에 대한 지속적인 유지 관리 및 업데이트는 재정적 부담을 가중시켜 기업이 리소스를 효과적으로 할당하기 어렵게 만들 수 있습니다. 결과적으로 예측 유지 관리 기술과 관련된 높은 비용은 공급업체가 다양한 부문에서 더 광범위한 채택을 촉진하기 위해 극복해야 하는 상당한 시장 과제를 나타냅니다.
이 시장 보고서는 최근의 새로운 개발, 무역 규정, 수출입 분석, 생산 분석, 가치 사슬 최적화, 시장 점유율, 국내 및 지역 시장 참여자의 영향, 새로운 수익 창출처, 시장 규정의 변화, 전략적 시장 성장 분석, 시장 규모, 범주 시장 성장, 응용 분야 틈새 시장 및 지배력, 제품 승인, 제품 출시, 지리적 확장, 시장의 기술 혁신에 대한 분석 기회를 제공합니다. 시장에 대한 자세한 정보를 얻으려면 Data Bridge Market Research에 연락하여 분석가 브리핑을 받으세요. 저희 팀은 시장 성장을 달성하기 위한 정보에 입각한 시장 결정을 내리는 데 도움을 드립니다.
예측 유지 관리 시장 범위
시장은 구성 요소, 배포 모드, 조직 규모, 수직 및 이해 관계자를 기준으로 세분화됩니다. 이러한 세그먼트 간의 성장은 산업의 빈약한 성장 세그먼트를 분석하고 사용자에게 핵심 시장 애플리케이션을 식별하기 위한 전략적 결정을 내리는 데 도움이 되는 귀중한 시장 개요와 시장 통찰력을 제공하는 데 도움이 됩니다.
요소
- 솔루션
- 통합
- 독립형
- 서비스
- 관리 서비스
- 전문 서비스
- 시스템 통합
- 지원 및 유지 관리
- 컨설팅
시스템 통합
- 지원 및 유지 관리
- 컨설팅
배포 모드
- 온프레미스
- 구름
- 퍼블릭 클라우드
- 프라이빗 클라우드
- 하이브리드 클라우드
조직 규모
- 대기업
- 중소기업(SME)
수직의
- 정부와 국방
- 조작
- 에너지 및 유틸리티
- 운송 및 물류
- 의료 및 생명 과학
이해 관계자
- MRO
- OEM/ODM
- 기술 통합자
예측 유지 관리 시장 지역 분석
위에 언급된 대로 구성 요소, 배포 모드, 조직 규모, 수직 및 이해 관계자별로 시장을 분석하고 시장 규모에 대한 통찰력과 추세를 제공합니다.
The countries covered in the market report are U.S., Canada, Mexico in North America, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in Asia-Pacific (APAC), Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).
North America is expected to dominate the predictive maintenance market, driven by significant technological advancements in the region. The increasing number of players offering prognostic maintenance solutions is also anticipated to contribute to the market's growth. As more businesses adopt these solutions, the demand for predictive maintenance technologies will rise, further boosting the market. Additionally, the presence of leading companies and continuous innovations in the region will support continued market expansion.
Asia Pacific is projected to experience steady growth in the adoption of predictive maintenance, driven by emerging economies in the region. Technological advancements and the increasing need for businesses to optimize asset performance through efficient maintenance strategies are key factors fueling this growth. As industries strive to enhance productivity and reduce downtime, predictive maintenance technologies are becoming essential. Moreover, the region's focus on embracing cutting-edge innovations will further accelerate the integration of predictive maintenance solutions.
The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.
Predictive Maintenance Market Share
The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.
Predictive Maintenance Market Leaders Operating in the Market Are:
- Microsoft (U.S.)
- IBM (U.S.)
- SAP (Germany)
- SAS Institute Inc. (U.S.)
- Software GmbH (Germany)
- Cloud Software Group, Inc. (U.S.)
- Hewlett Packard Enterprise Development LP (U.S.)
- Altair Engineering Inc. (U.S.)
- Splunk LLC (U.S.)
- Oracle (U.S.)
- Google (U.S.)
- Amazon Web Services, Inc. (U.S.)
- General Electric Company (U.S.)
- Schneider Electric (France)
- Hitachi, Ltd. (Japan)
- PTC (U.S.)
- DINGO Software Pty. Ltd (Australia)
Latest Developments in Predictive Maintenance Market
- In August 2023, Honeywell, a U.S.-based company, launched its Versatilis transmitters, a solution designed for condition-based monitoring of rotating equipment across various industries
- In June 2023, Accenture acquired Nextira, a premier Amazon Web Services (AWS) partner, to enhance its engineering capabilities within Accenture Cloud First. This acquisition will enable Accenture to deliver predictive analytics, cloud-native innovations, and immersive experiences to clients, leveraging AWS solutions to provide comprehensive cloud capabilities
- In May 2023, Cisco Systems and NTT, a telecom infrastructure services provider, partnered to develop solutions that deliver real-time data insights, improved decision-making, and enhanced security. Their collaboration focuses on predictive maintenance, supply chain management, and asset tracking
- In June 2022, Siemens, based in the U.K., acquired Senseye to strengthen its portfolio in predictive maintenance and asset intelligence
- In June 2022, Microsoft, headquartered in the U.S., partnered with Schneider Electric, based in France, to introduce advanced maintenance solutions that enhance energy management, asset performance, and operational efficiency
- In July 2021, Schneider Electric launched EcoStruxure TriconexTM Safety View, a pioneering software for bypass and alarm management that is dual-certified for safety and cybersecurity. This solution allows operators to monitor bypass status and critical alarms to maintain safe operations under high-risk conditions
- In May 2021, SAS Institute released SAS Viya, its powerful cloud-native platform for data management and analytics, aimed at empowering data-driven success through new integrated solutions for data operations
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.