스페인 서비스형 기계 학습 시장, 서비스별(관리형 서비스, 전문, 전문 서비스), 비즈니스 기능(인적 자원, 판매 및 마케팅, 재무 및 운영), 배포 모델(클라우드, 온프레미스), 조직 규모(대규모 조직) , 중소기업), 애플리케이션(약물 발견, 사기 탐지 및 위험 관리, 자연어 처리, 마케팅 및 광고, 보안 및 감시, 이미지 인식, 예측 분석, 데이터 마이닝, 증강 및 가상 현실), 최종 사용자(뱅킹, 금융 서비스, 보험, IT 및 통신, 연구 및 학술, 정부 및 공공 부문, 소매 및 전자상거래, 제조, 의료 및 제약, 여행 및 물류, 에너지 및 유틸리티, 미디어 및 엔터테인먼트) - 산업 동향 및 2029년 예측
시장 분석 및 규모
서비스 시장으로서의 기계 학습 분야 기업은 의료 기술, BFSI, 안정적인 수익 흐름을 결정하기 위한 통신 및 코로나 바이러스 금액을 게시합니다. 그러나 기술적 오류와 머신러닝 경험을 갖춘 전문 인력의 부족은 조직의 머신러닝 도입을 가로막는 주요 요인 중 하나인 것으로 보입니다. 이는 기계 학습을 서비스 플랫폼으로 구현하는 데 장애물이 될 수 있습니다. 또한, 장비 부족으로 인한 지식 보안 부족은 시장 확대에 부정적인 영향을 미칩니다. 따라서 서비스 시장으로서의 기계 학습 참가자는 서비스 비즈니스로서의 기계 학습을 표준화하기 위해 정부 및 제한 기관과 협력해야 합니다.
Data Bridge Market Research는 2021년 54억 5천만 달러였던 서비스로서의 기계 학습 시장 가치가 2022~2029년 예측 기간 동안 연평균 성장률(CAGR) 39.76%로 2029년까지 793억 4천만 달러에 이를 것으로 예상합니다.
시장 정의
머신 러닝은 다양한 데이터 세트에 노출될 때 기본 기능을 학습하고 변경할 수 있는 기능을 컴퓨터에 제공하는 기술입니다. 머신러닝은 비즈니스에 가장 중요한 도구가 되었습니다. Amazon, Google과 같은 거대 기술 기업은 고객 기반을 확대하고 강화하기 위해 막대한 지출을 하고 있습니다.
보고서 범위 및 시장 세분화
보고서 지표 |
세부 |
예측기간 |
2022년부터 2029년까지 |
기준 연도 |
2021 |
역사적인 연도 |
2020(2019~2014로 사용자 정의 가능) |
양적 단위 |
수익(단위: USD 10억), 수량(단위), 가격(단위: USD) |
해당 세그먼트 |
서비스(관리형 서비스, 전문가, 전문 서비스), 업무 기능(인사, 영업 및 마케팅, 재무, 운영), 배포 모델(클라우드, 온프레미스), 조직 규모(대규모 조직, 중소기업), 애플리케이션( 약물 발견, 사기 탐지 및 위험 관리, 자연어 처리, 마케팅 및 광고, 보안 및 감시, 이미지 인식, 예측 분석, 데이터 마이닝, 증강 및 가상 현실), 최종 사용자(은행, 금융 서비스, 보험, IT 및 통신) , 연구 및 학술, 정부 및 공공 부문, 소매 및 전자상거래, 제조, 의료 및 제약, 여행 및 물류, 에너지 및 유틸리티, 미디어 및 엔터테인먼트) |
해당 시장 참여자 |
Google(미국), Microsoft(미국), IBM(미국), SAP(독일), Amazon Web Services, Inc.(미국) |
시장 기회 |
|
스페인 서비스로서의 기계 학습 시장 역학
이 섹션에서는 시장 동인, 장점, 기회, 제한 사항 및 과제를 이해하는 방법을 다룹니다. 이 모든 내용은 아래와 같이 자세히 설명됩니다.
드라이버:
- 기술의 발전
승인 기술에서 발생하는 급속한 발전과 혁신 영역 단위입니다. 수많은 해상도 공급업체가 이 분야에서 많은 노력을 기울이고 있습니다. 예를 들어, Affectiva는 최근 200만 개 이상의 얼굴 비디오로 구성된 가장 큰 지식 저장소를 보유한 감정 분석 기술을 출시하여 구매자가 비교할 수 없는 통찰력으로 높은 정확성을 얻을 수 있도록 허용했습니다. 그 외에도 Cognitec System, Emotient, Gesturetek, Saffron 및 Palantir와 같은 소규모 플레이어와 같은 대체 플레이어는 동작 인식, 얼굴 인식, 심리적 특징 컴퓨팅 및 체세포 분석 분야에서 중요한 발전을 이루고 있습니다. 이러한 개발 영역은 향후 몇 년 동안 시장 확장을 촉진할 것으로 예상됩니다.
- 데이터 저장 및 보관
딥러닝 알고리즘에서 정보 저장 및 보관 패키지는 매우 발전된 문제에 대한 솔루션을 예측하는 데 중요한 역할을 합니다. 딥러닝 알고리즘 프로그램은 여러 계층으로 구성된 합성 신경망을 다루기 때문에 결과를 제공하기 위해 엄청난 양의 정보 세트가 필요합니다. 딥러닝 알고리즘 프로그램은 정보 저장 및 보관 패키지를 사용하여 인공 신경망 내의 고급 기능에 중점을 둡니다.
- 모델러 및 프로세싱
지난 10년 동안 기계 학습 기술은 통계, 산술, 신경생물학, 컴퓨팅 등 다양한 분야에서 개발된 '알고리즘'으로 발전하여 상업적으로 실행 가능하고 계산적으로 견고하게 만들어졌습니다. 음성 인식, 사기 탐지, 네트워크 개선 등 오늘날 제공되는 여러 애플리케이션은 분류, 회귀, 추정을 지원하는 다양한 기계 학습 기술을 사용하여 방법 구조화된 지식 세트에 적용합니다.
- 클라우드 및 웹 기반 애플리케이션 프로그래밍 인터페이스(APIS)
머신러닝 규칙에서 정보 요구는 중요한 입력 매개변수입니다. 은행 및 금융 서비스와 같은 다양한 비즈니스 분야에서는 시장 행동을 예측하기 위해 즉각적으로 엄청난 양의 정보를 원합니다. 정보 저장 및 보관 소프트웨어 패키지에서 정보를 수집할 때 기계 학습 알고리즘은 솔루션을 예측하는 데 걸리는 시간이 현저히 줄어듭니다. 이 품질을 뛰어넘기 위해 기계 학습 알고리즘은 클라우드와 애플리케이션 플랫폼 간의 인터페이스를 생성합니다.
기회:
- 헬스케어 산업에 대한 투자 증가
의학 분야에서는 어려운 통계를 계산하기 위해 엄청난 양의 정보가 배포되므로 관심 비즈니스 내 애플리케이션에 중요한 추세와 패턴을 정확하게 측정합니다. 방대한 정보는 의사가 문제가 발생하기 전에 이를 예측하는 데 도움이 됩니다. Elsevier Health Analytics 클러스터는 방대한 정보를 배포하여 FRG의 환자 치료에 혁명을 일으켰습니다. 회사는 허용 가능한 치료법에 대한 증거 중심 정보를 늘리기 위해 보건 경제학자, 의사, 통계학자, IT 전문가 및 분석가와 긴밀히 협력하고 있습니다. 이는 종종 관심을 끄는 거대한 정보에 의해 관리되며 AI의 도움을 받아 의료 전문가가 적절하게 활용합니다. 엄청난 양의 정보를 준비하면서 독일의 머신러닝 시장이 더욱 확대되었습니다.
제한사항/도전:
서비스 시장으로서의 기계 학습에 투입할 확실한 노동력의 부족은 전 세계 서비스 시장으로서의 기계 학습의 성장을 어느 정도 방해할 주요 문제가 될 수 있습니다. 또한 기업은 MLaaS 플랫폼에 구현할 특정 기능을 맞춤화할 수 있는 숙련된 서비스를 원합니다. 엄격한 규정 준수 문제는 목표 시장을 제한할 것으로 예상되는 또 다른 문제입니다.
이 기계 학습은 서비스입니다. 시장 보고서는 새로운 최근 개발, 무역 규정, 수출입 분석, 생산 분석, 가치 사슬 최적화, 시장 점유율, 국내 및 현지 시장 참가자의 영향에 대한 세부 정보를 제공하고, 새로운 수익 창출 측면에서 기회를 분석합니다. 시장 성장 분석, 시장 규모, 카테고리 시장 성장, 애플리케이션 틈새 및 지배력, 제품 승인, 제품 출시, 지리적 확장, 시장의 기술 혁신. 서비스형 기계 학습에 대한 자세한 정보를 얻으려면 시장 연락처 분석가 요약을 위한 Data Bridge 시장 조사를 통해 우리 팀은 귀하가 시장 성장을 달성하기 위해 정보에 입각한 시장 결정을 내리는 데 도움을 드릴 것입니다.
코로나19가 다음에 미치는 영향 서비스로서의 기계 학습 시장
전 세계가 사회적 거리두기 기술을 실천하고 있기 때문에 코로나19 팬데믹으로 인해 머신러닝에 대한 관심이 가속화되었습니다. 기계 학습을 서비스 시장으로 통합하는 것은 통합의 양과 성격에 따라 각 소프트웨어 시스템과 서비스를 통해 가능해야 합니다. 열 카메라와 클러스터 식별 프레임워크의 활용은 공항 터미널, 기차역 및 완전히 다른 대중 방문 장소에서 일반적이 되었습니다. 이로 인해 서비스 시장으로서의 기계 학습이 주목을 받게 되었으며, 이는 목표 시장을 지속적으로 향상시킬 것으로 예상됩니다. 또한, 코로나19 치료 관련 진료소에서 제한된 구역에 있는 사람들의 존재를 인식하기 위해 AI를 사용하는 것은 전 세계 기계 학습 서비스 시장에 긍정적인 영향을 미칩니다. AI 및 조사에 사용되는 계산은 서비스 시장으로서의 기계 학습 내에서 운영되는 플레이어/공급업체에 대한 역동적인 기회를 생성하는 좋은 추적을 통해 개선되었습니다.
스페인 서비스로서의 기계 학습 시장 범위
서비스로서의 머신러닝 시장은 서비스, 비즈니스 기능 배포 모델, 조직 규모, 애플리케이션, 최종 사용자를 기준으로 분류됩니다. 이러한 세그먼트 간의 성장은 업계의 빈약한 성장 세그먼트를 분석하고 사용자에게 귀중한 시장 개요 및 시장 통찰력을 제공하는 데 도움이 됩니다. 핵심 시장 애플리케이션을 식별하기 위한 전략적 결정을 내리는 데 도움을 줍니다.
서비스
- 매니지드 서비스
- 전문적인
- 전문적인 서비스
업무 기능
- 인적 자원
- 영업 및 마케팅
- 재정 및 운영
배포 모델
- 구름
- 전제에
조직 규모
- 대규모 조직
- 중소기업
애플리케이션
- 약물 발견
- 사기 탐지 및 위험 관리
- 자연어 처리
- 마케팅과 광고
- 보안 및 감시
- 이미지 인식
- 예측 분석
- 데이터 수집
- 증강 및 가상 현실
최종 사용자
- 은행 및 금융 서비스
- 보험
- IT 및 통신
- 연구 및 학술
- 정부 및 공공 부문
- 소매 및 전자상거래
- 조작
- 의료 및 제약
- 여행 및 물류
- 에너지 및 유틸리티
- 미디어 및 엔터테인먼트
경쟁 구도와 서비스로서의 기계 학습 시장 점유율 분석
서비스로서의 머신러닝 시장 경쟁 환경은 경쟁사별 세부 정보를 제공합니다. 포함된 세부 정보에는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 능력, 회사 강점 및 약점, 제품 출시, 제품 폭 및 폭, 애플리케이션이 포함됩니다. 권세. 제공된 위의 데이터 포인트는 서비스 시장으로서의 기계 학습과 관련된 회사의 초점에만 관련됩니다.
서비스형 기계 학습 시장에서 활동하는 주요 플레이어는 다음과 같습니다.
- 구글(미국),
- 마이크로소프트(미국),
- IBM(미국),
- SAP (독일),
- Amazon Web Services, Inc.(미국)
SKU-