Global Natural Language Processing Nlp Healthcare Life Sciences Market
시장 규모 (USD 10억)
연평균 성장률 : %
예측 기간 |
2024 –2031 |
시장 규모(기준 연도) |
USD 2.11 Billion |
시장 규모(예측 연도) |
USD 8.48 Billion |
연평균 성장률 |
|
주요 시장 플레이어 |
|
>글로벌 자연어 처리 NLP 헬스케어 생명 과학 시장은 2023년에 21억 1천만 달러로 평가되었습니다. 시장 규모는 19%의 CAGR로 성장하여 2031년까지 84억 8천만 달러에 도달할 것으로 예상됩니다.
글로벌 자연어 처리 NLP 헬스케어 생명 과학 시장 – 산업 개요
의료 및 생명 과학 분야는 전자 건강 기록, 임상 시험 보고서, 연구 데이터, 환자 보고서를 포함한 엄청난 양의 데이터를 생성합니다. 세계 경제 포럼에 따르면 의료 산업은 전 세계에서 생성된 데이터의 30% 이상을 생성하며, 그 중 대부분은 사용되지 않습니다. 의료 분야에서 자연어 처리(NLP)를 통합하면 의료 데이터를 처리하는 데 큰 역할을 하여 혁신과 발명으로 이어지고, 이는 잠재적으로 다양한 건강 상태에 효과적인 치료법과 요법, 약물, 약물을 발견하는 기반이 될 수 있습니다. NLP는 포괄적인 데이터 분석 중심 접근 방식으로 의료 및 생명 과학 산업을 완전히 변화시켰습니다. 이제 NLP의 비정형 데이터, 감정 분석, 명명된 엔터티 인식 및 약물 발견에 대한 동적 분석을 통해 환자 참여를 크게 개선하는 데 도움이 되는 귀중한 통찰력을 추출하여 사용되지 않는 의료 및 생명 과학 기록이 없으며, 결과적으로 글로벌 NLP 의료 생명 과학 시장이 확장되고 있습니다.
Data Bridge Market Research 시장 보고서는 최근 개발 사항, 무역 규정, 시장 점유율, 세분화 및 지역 분석에 따른 시장 동향, 시장 참여자의 영향, 새로운 수익 창출처 측면에서의 기회 분석, 시장 규정, 전략적 시장 성장 분석, 시장 규모, 범주별 시장 성장, 응용 분야 틈새 시장 및 지배력, 제품 승인, 제품 출시, 지리적 확장 및 시장의 기술 혁신에 대한 세부 정보를 제공합니다. 시장에 대한 자세한 정보를 얻으려면 Data Bridge Market Research의 전문가 분석가 팀에 문의하십시오. 저희 팀은 귀하가 사업 성장을 달성하기 위해 정보에 입각한 시장 결정을 내리는 데 도움을 드릴 것입니다.
글로벌 자연어 처리 NLP 헬스케어 생명 과학 시장 규모
NLP Healthcare Life Sciences 시장 보고서 지표 세부 정보 |
|
예측 기간 |
2024-2031 |
기준 연도 |
2023 |
역사적 해 |
2022 (사용자 정의 가능 2016-2021) |
측정 단위 |
미국 달러 10억 |
데이터 포인터 |
시장 통찰력, 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자 및 시장 시나리오, 심층적인 전문가 분석, 환자 역학, 파이프라인 분석, 가격 분석 및 규제 프레임워크. |
NLP와 의료 및 생명 과학의 융합은 데이터를 활용하여 이 부문의 이익을 위해 의학에 진화를 가져왔습니다. 의료 데이터의 기하급수적 증가로 인해 구조화되지 않은 데이터의 바다를 관리하여 귀중한 통찰력을 얻을 수 있는 NLP 솔루션에 대한 필요성이 높아지고 있습니다. AI와 머신 러닝의 지속적인 혁신은 NLP 애플리케이션의 역량과 정확성을 개발하는 데 도움이 되며, 의료 분야의 연구 개발을 강화하기 위해 NLP 기술 도입을 더욱 장려하고 있습니다. NLP와 의료의 상호 연결은 시장 성장을 제공하기 위해 환자 치료와 의료 서비스를 조정하는 의료 서비스 제공자에게 큰 도움이 됩니다. Databridge Market Research는 시장을 종합적으로 분석하여 글로벌 자연어 처리 NLP 의료 생명 과학 시장이 3.64%의 CAGR로 증가하고 있다고 밝혔습니다. 시장 규모는 2023년에 21억 1,000만 달러로 평가되었으며 2031년까지 84억 8,000만 달러로 성장할 것으로 예상됩니다.
NLP Healthcare Life Sciences 시장 역학
NLP Healthcare Life Sciences 시장 성장 동인
추가 분석을 위한 전자 건강 기록(EHR) 구성
의료 기관에서 사용하는 전자 건강 기록(EHR)은 구조화, 저장 및 분석하기 어려운 환자 관련 데이터를 대량으로 생성합니다. 이러한 전자 기록에는 일반적으로 의료 보고서, 환자 병력 및 기타 종류의 데이터가 포함됩니다. 이러한 데이터를 구성하고 검토하는 것이 중요한 것뿐만 아니라 이 데이터에 쉽게 액세스할 수 있는 것도 마찬가지로 중요합니다. 임상 문서, 음성 인식, 데이터 마이닝 연구 및 임상 의사 결정 지원을 포함하는 NLP 기술은 의료 데이터 추출, 검토 및 사용에 따른 가용성 보장에 매우 생산적입니다. NLP를 활용함으로써 의료 제공자는 이 방대한 데이터를 보다 효과적으로 분석하고 해석하여 향상된 임상 의사 결정, 개인화된 환자 관리 및 더 큰 운영 효율성을 달성하여 시장 성장을 촉진할 수 있습니다.
인공지능(AI)과 머신러닝(ML) 기반 예측 분석
NLP being a sub-division of artificial intelligence in equipped with statistic and analytical models that have a part to play in identifying trends and patterns. When NLP in healthcare is fed with complex data, it structures it to perform comprehensive analysis on patients’ records. In other terms, it runs predictive analysis on the patient related data which bring forth the current health conditions and the level of effect on the body as well as helps foresee ailments and diseases a patient is vulnerable to. These technologies allow extracting useful insights, identifying patterns, and outcome forecasting from very large data sets for more informed clinical decisions and better patient outcomes. The conclusion of this predictive analysis is improved patient care and advanced prevention measures to prevent predicted health condition. Predictive analysis through NLP is a major contributor to enhancing patient care services and furthering the market growth.
Automating Patient Records and Documentation Reduces Healthcare Cost
Automated clinical documentation, powered by Natural Language Processing (NLP), streamlines management of patient records by converting spoken or written information into structured, actionable data. This automation reduces the burden on healthcare professionals, minimizes manual entry errors, and ensures that patient information is accurately and comprehensively recorded. This automation technology is a cost-effective way, making it easier for healthcare professionals to spend more time on patient care rather than administration, leading to improved accuracy and therefore, general efficiency in keeping medical records. With these menial tasks becoming automated, healthcare professionals are enjoying cost efficiency while enhancing overall quality of patient care. Automation also enables unification of health records by collating the entire patient record stored on the database of other doctors or healthcare centers. Healthcare turning cost-effective due to NLP is a stimulus for the growth Global NLP Healthcare Life Sciences.
NLP Healthcare Life Science Market Growth Opportunities
Customized Treatment Plan
NLP plays a key role in preparing an individualized and focused treatment plan. NLP’s ability to extract and unify patients’ data from various sources like electronic health records, clinical notes, and medical histories, which enables easy processing and identification of particular needs of patients, genetic factors, and health conditions. This helps healthcare providers prepare a treatment plan to suit patients’ needs. Devising a personalized treatment plan is an opportunity for doctors to create the most effective course of treatment of their patients and thereby, expand their patient base. For instance, NLP can highlight the patterns in patient history so that one could determine the drugs most likely to be effective or even identify possible side effects in a case similar to others. As such, NLP is supportive of precision medicine, where interventions will be more focused and more effective, hence improving treatment efficiency and patient outcome.
Integrating IOT in Wearables
Wearables incorporated with NLP powered by IoT enables capturing of real-time patient data. It helps monitor patients’ health remotely all throughout the day and allows healthcare professionals to record any complications and variations so that they can act immediately to prepare an action plan to prevent any such complexity in future.
Collaboration with Pharmaceutical and Biotech Companies
Collaborating with pharmaceutical and biotechnology companies to integrate Natural Language Processing (NLP) into drug discovery, clinical trials management, and pharmacovigilance processes drives efficiency and accelerates innovation in life sciences. NLP enhances the efficiency of clinical trials by automating data extraction from medical records and patient reports, facilitating faster recruitment and analysis of trial data.
NLP Healthcare Life Science Market Size Growth Challenges
NLP in healthcare and health sciences are usually fed with specific group of terms that might not apply to any other command. Since human language keeps on evolving, the predefined group of terms might inaccurately structure the data. This usually happens when an NLP program has a built-in group of terms which might not match the unstructured data being examined. This challenge is easy to overcome with a certain level of human involvement.
NLP is capable of organizing and categorizing unstructured data. However, the tool can turn less-efficient faced by the complexity of human language. It might not be able to cope up with complicated language, dialect, and reference points. This, as a result, raises the chances of false positives and negatives.
NLP Healthcare Life Science Market Size Growth Restraints
Data Privacy and security concerns
In the application of NLP solutions, processing of sensitive patient information will give rise to drastic concerns about privacy laws and data security breaches. While healthcare providers are already exploring every opportunity to implement NLP technologies to the fullest, they will have to wade through rigid data protection laws under HIPAA in the US and the GDPR in Europe—both enacted for the purpose of maintaining the confidentiality of patients and stemming possible unauthorized access to personal health information. To accomplish all this, NLP systems should be fully security enabled. It should be guaranteed that this requirement is met by the application of robust methods for the encryption of data at rest and in transit, very strict access controls that limit access of data to only authorized users, and anonymization techniques to help guard against undesired exposure of the patient's identity. Aggregation of these security protocols can guarantee
Integration Complexity of NLP Systems
Integrating natural language processing (NLP) systems with existing healthcare IT infrastructure, including EHRs and clinical systems, can be complex and time-consuming. Healthcare organizations face challenges such as interoperability issues, data standardization, and compatibility with legacy systems when deploying NLP solutions. The integration process requires careful planning, customization, and coordination with IT teams to ensure seamless connectivity and functionality across different platforms. Moreover, training healthcare staff to effectively utilize NLP tools and interpret the insights generated poses additional implementation challenges.
NLP Healthcare Life Science Market Scope and Trends
NLP Healthcare Life Science Market Segmentations Overview |
|||
Segments Type |
Sub-Segments |
||
Component |
Standalone Solutions and Services |
||
NLP Type |
Rule-Based NLP, Statistical NLP, Hybrid NLP |
||
Deployment Mode |
On-Premises, Cloud |
||
Organization Size |
Large Enterprises, Small and Medium Enterprises |
||
|
|
||
End-User |
NLP for Physicians, NLP for Researchers, NLP for Patients, NLP for Clinical Operators |
Key Insight
- In the recent years, with the emergence of AI potential as a game changer in healthcare, by employing machine learning and NLP techniques to the effective processing of growing volumes of data boosts one of the most impressive applications known as automated clinical coding that streamlines the administration and management of clinical records in a hospital and medical research setting.
- There has been a surge of articles for automated clinical coding with deep learning (as the current mainstream approach of AI) in the last few years, as reviewed in recent surveys.
- Though the concerns are addressed and safety and efficacy of chat bots are pointed out, human aspects of healthcare cannot be replaced. In this way, chat bots can only become an integral part of the clinical practice to work in tandem with healthcare professionals, decreasing cost, enhancing workflow efficiencies, and thus improvising on outcomes for better results.
NLP Healthcare Life Science Market Regional Analysis – Market Trends
NLP Healthcare Life Science Market Regional Overview |
|
Regions |
Countries |
Europe |
Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe |
APAC |
China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific |
North America |
U.S., Canada, and Mexico |
MEA |
Saudi Arabia, U.A.E., South Africa, Egypt, Israel, Rest of Middle East, and Africa |
South America |
Brazil, Argentina, and Rest of South America |
Key Insights
- North America is expected to dominate the market due to increasing demand for NLP solutions and substantial investments in robotics and NLP-related research and development initiatives. The region's advanced healthcare infrastructure and strong presence of key technology giants facilitate the rapid adoption of NLP technologies across various applications, including clinical documentation, patient interaction analysis, and data analytics.
- Asia-Pacific is expected to witness significant growth due to widespread adoption of advanced technologies aimed at optimizing business operations. Increasing investments in healthcare IT infrastructure and rising awareness about the benefits of NLP in improving clinical decision-making processes and patient engagement are key factors driving this growth.
- The Netherlands Organization for Scientific Research (NWO) is involved with projects applying NLP for the analysis of scientific data obtained from biomedical research studies. The goal is to develop new treatments and improve understanding of disease biology.
- The European Union-funded European Health Data Space (EHDS) project is focused on developing NLP tools capable of handling multiple European languages. The initiative aims to create standardized NLP solutions that can process health data across various languages and dialects throughout Europe.
- NHS Digital in the UK is focusing on integrating NLP technologies into EHR systems to enhance clinical documentation and information retrieval. Such integration tries to achieve an enhanced level of data accuracy for patients, which in another sense will allow for the proper conduction of right clinical decisions due to the fact that it automates data extraction and analysis processes from medical recording.
- In South Africa, Data Science Africa develops NLP models that are built to support a number of local languages, from Afrikaans and Zulu to others, to be placed in a position to meet multilingual requirements within a regionally based healthcare system.
NLP Healthcare Life Science 시장 선도 기업
- 3M(미국)
- Cerner Corporation (미국)
- Nuance Communications Inc. (미국)
- Dolby Systems Inc. (미국)
- 마이크로소프트(미국)
- IBM(미국)
- Google LLC(Alphabet Inc.)(미국)
- Amazon Web Services Inc. (미국)
- Apixio Inc. (미국)
- 아베르비스(독일)
- 클리니싱크(미국)
- 렉살리틱스(미국)
- 내러티브 사이언스(미국)
- 존스노우 랩스(미국)
- BenevolentAI(영국)
NLP Healthcare Life Science 시장 최근 동향
- 2024년 2월, Persistent Systems는 Microsoft와 협력하여 생성 AI로 구동되는 새로운 PHM 솔루션을 출시했습니다. 가치 기반 치료 모델을 뒷받침하기 위해 개발된 이 고급 솔루션은 SDOH를 사용하여 비임상적 환자 요구를 측정합니다. 그 결과, 여러 임상적 상태에서 의료비 지출에 대한 예측 분석의 정확성을 강화합니다.
- 2023년 6월, 가치 기반 의료를 위한 인공지능 솔루션 분야의 선두주자인 Apixio는 건강 보험에 대한 선불 청구 정확성을 개선하는 전문성으로 유명한 기술 회사인 ClaimLogiq와 합병을 완료했습니다. 새로 합병된 법인은 Apixio라는 이름으로 불리며 즉시 의료 데이터 및 분석 분야에서 가장 크고 지배적인 기업 중 하나가 될 것입니다. 이 전략적 합병은 Apixio의 고급 AI와 ClaimLogiq의 청구 처리 정확성을 결합하여 포괄적인 통찰력과 솔루션을 제공하기 위한 강력한 플랫폼을 만듭니다. 새로운 Apixio는 데이터 정확성을 개선하고, 비용 예측의 최적화를 가져오고, 보다 효과적인 가치 기반 치료 전략을 추진하여 의료 관리에 혁신을 일으키고자 합니다. 이는 의료 분석 산업의 새로운 표준입니다.
DBMR의 자연어 처리 NLP 헬스케어 생명 과학 시장에 대한 시장 보고서는 여러 가지 중요한 비즈니스 결정을 내리는 데 도움이 될 수 있는 귀중한 통찰력을 제공합니다. 당사의 보고서와 연구 전문성을 바탕으로 귀사의 비즈니스를 위한 현실적인 성장 전략을 수립할 수 있습니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.