Global Mlops Market
시장 규모 (USD 10억)
연평균 성장률 : %
예측 기간 |
2024 –2031 |
시장 규모(기준 연도) |
USD 7.62 Billion |
시장 규모(예측 연도) |
USD 11.69 Billion |
연평균 성장률 |
|
주요 시장 플레이어 |
>글로벌 MLOP 시장, 구성요소(플랫폼, 서비스), 배포 모드(온프레미스, 클라우드, 하이브리드), 조직 규모(대기업, 중소기업(SME)), 산업 분야(금융 서비스(BFSI), 제조, 정보 기술(IT) 및 통신, 소매 및 전자 상거래 , 의료, 기타) - 산업 동향 및 2031년까지의 예측.
MLOP 시장 분석 및 규모
머신 러닝 운영(MLOps)은 프로덕션 환경에서 머신 러닝 모델의 배포, 모니터링 및 관리를 간소화하고 자동화하는 데 사용되는 관행 및 도구 세트를 말합니다. MLOps는 머신 러닝 라이프사이클 전반에 걸쳐 일관성, 안정성 및 확장성을 보장하여 머신 러닝 모델의 개발과 배포 간의 격차를 메우는 것을 목표로 합니다.
Data Bridge Market Research는 2023년에 76억 2천만 달러였던 글로벌 MLOP 시장이 2031년에는 116억 9천만 달러에 도달할 것으로 예상하고, 2024년에서 2031년까지의 예측 기간 동안 5.5%의 CAGR을 보일 것으로 분석했습니다. Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석, 페슬 분석이 포함되어 있습니다.
보고 범위 및 시장 세분화
보고서 메트릭 |
세부 |
예측 기간 |
2024년부터 2031년까지 |
기준 연도 |
2023 |
역사적 연도 |
2022 (2016년부터 2021년까지 맞춤화) |
양적 단위 |
매출은 10억 달러, 볼륨은 단위, 가격은 10억 달러 |
다루는 세그먼트 |
구성 요소(플랫폼, 서비스), 배포 모드(온프레미스, 클라우드, 하이브리드), 조직 규모(대기업, 중소기업(SME)), 산업 수직(금융 서비스(BFSI), 제조, 정보 기술(IT) 및 통신, 소매 및 전자 상거래, 의료, 기타) |
적용 국가 |
미국, 캐나다, 멕시코, 브라질, 아르헨티나, 남미 기타 지역, 독일, 이탈리아, 영국, 프랑스, 스페인, 네덜란드, 벨기에, 스위스, 터키, 러시아, 유럽 기타 지역, 일본, 중국, 인도, 한국, 호주, 싱가포르, 말레이시아, 태국, 인도네시아, 필리핀, 아시아 태평양 기타 지역, 사우디 아라비아, UAE, 남아프리카, 이집트, 이스라엘, 중동 및 아프리카 기타 지역 |
시장 참여자 포함 |
Databricks(미국), Domino Data Lab(미국), Kubeflow(Google 제공)(미국), Amazon SageMaker(미국), Paperspace Gradient(미국), Fiddler AI(미국), MLflow(Databricks 제공)(미국), Valohai(핀란드), Pachyderm(미국), ZenML(독일) |
시장 기회 |
|
시장 정의
MLOps는 모델 개발 및 교육부터 배포, 모니터링 및 관리까지 전체 머신 러닝 라이프사이클을 간소화하는 다양한 솔루션과 서비스를 포함합니다. 이러한 MLOps 도구는 데이터 과학과 프로덕션 간의 격차를 메워 효율적인 워크플로, 최적화된 모델 성능 및 다양한 산업에서 머신 러닝 모델을 실제 애플리케이션에 원활하게 통합할 수 있도록 보장합니다.
MLOP 시장 동향
운전자
- 개선된 모델 거버넌스 및 설명 가능성에 대한 수요 증가
개선된 모델 거버넌스와 설명 가능성에 대한 증가하는 수요는 글로벌 MLOps(머신 러닝 운영) 시장을 앞으로 나아가게 하는 중요한 원동력입니다. 조직이 머신 러닝 모델을 운영에 점점 더 통합함에 따라 이러한 모델의 신뢰성, 투명성 및 책임을 보장하는 데 대한 강조가 높아지고 있습니다. 향상된 모델 거버넌스에는 버전 제어, 규정 준수 및 위험 관리와 같은 측면을 다루면서 머신 러닝 모델의 전체 수명 주기를 관리하기 위한 엄격한 정책과 통제를 수립하는 것이 포함됩니다. 또한 향상된 설명 가능성에 대한 필요성은 모델 결정을 해석하고 이해 관계자에게 모델 동작에 대한 통찰력을 제공하며 정보에 입각한 의사 결정을 가능하게 하는 도구와 기술의 개발을 촉진하고 있습니다. 거버넌스와 설명 가능성에 대한 이러한 강조는 MLOps 솔루션이 머신 러닝 배포 내에서 신뢰, 규정 준수 및 신뢰성을 촉진하는 데 중요한 역할을 한다는 것을 강조하여 시장 성장을 촉진합니다.
- 증가하는 클라우드 도입 및 확장성
클라우드 컴퓨팅의 확대되는 채택과 확장성 추구는 글로벌 MLOps(머신 러닝 운영) 시장을 추진하는 핵심적인 원동력입니다. 조직이 머신 러닝 인프라를 호스팅하기 위해 클라우드 플랫폼을 점점 더 많이 활용함에 따라, 클라우드 환경과 원활하게 통합되고 확장 가능한 모델 배포 및 관리를 용이하게 하는 MLOps 솔루션에 대한 절실한 요구가 발생합니다. 클라우드 기반 MLOps 서비스는 탁월한 유연성을 제공하여 기업이 수요 변동에 대응하여 머신 러닝 운영을 빠르게 확장하는 동시에 협업, 버전 제어 및 리소스 최적화를 간소화할 수 있도록 합니다. 결과적으로 증가하는 클라우드 채택과 확장성 요구 사항의 융합은 글로벌 규모로 효율적이고 민첩하며 확장 가능한 머신 러닝 워크플로를 조율하는 데 MLOps 솔루션의 필수적인 역할을 강조합니다.
기회
- 신기술과의 통합
신기술과의 통합은 글로벌 MLOps 시장에 중요한 기회를 제공합니다. 인공지능(AI), 엣지 컴퓨팅, 사물 인터넷(IoT), 블록체인과 같은 새로운 기술이 계속 발전함에 따라 이러한 신기술과 원활하게 통합할 수 있는 고급 MLOps 솔루션에 대한 보완적 요구가 발생합니다. MLOps 도구와 관행을 활용하여 조직은 다양한 도메인에서 AI 및 머신 러닝 이니셔티브의 효율성, 안정성 및 확장성을 향상시킬 수 있습니다. 신기술과의 통합을 통해 MLOps 플랫폼은 실시간 분석, 예측 유지 관리, 자율 시스템, 개인화된 사용자 경험과 같은 복잡한 사용 사례를 처리할 수 있으므로 시장에서 혁신과 경쟁적 차별화를 위한 새로운 길을 열 수 있습니다.
- 중소기업 및 개인 개발자에 대한 관심 증가
중소기업(SME)과 개별 개발자에 대한 초점이 커지면서 글로벌 MLOps 시장에 큰 기회가 생깁니다. 머신 러닝과 AI의 채택이 대기업을 넘어 확대됨에 따라 중소기업과 개별 개발자는 점점 더 특정 요구 사항과 리소스 제약에 맞게 조정된 접근 가능하고 비용 효율적인 MLOps 솔루션을 찾고 있습니다. 시장의 이러한 성장하는 세그먼트에 맞춰 MLOps 공급업체는 제품, 서비스 및 운영을 개선하기 위해 머신 러닝 기능을 활용하고자 하는 잠재 고객의 방대한 풀에 참여합니다. 또한 중소기업과 개별 개발자에게 사용자 친화적인 MLOps 플랫폼을 제공하면 고급 분석 및 자동화에 대한 액세스를 민주화하여 혁신을 촉진하고 다양한 산업과 애플리케이션에서 머신 러닝 기술의 광범위한 채택을 촉진할 수 있습니다.
제약/도전
- 증가하는 데이터 보안 위험
데이터 보안 위험의 확대는 글로벌 MLOPs 시장에 상당한 과제를 안겨줍니다. 개인 식별 정보 및 독점적 비즈니스 데이터를 포함하여 머신 러닝 운영에 사용되는 민감한 데이터가 급증함에 따라 데이터 침해, 무단 액세스 및 악의적 공격의 가능성이 점점 더 커지고 있습니다. 훈련에서 배포에 이르기까지 MLOps 라이프사이클 전반에 걸쳐 데이터의 기밀성, 무결성 및 가용성을 보장하려면 강력한 보안 조치와 엄격한 규정 준수 표준 준수가 필요합니다. 그러나 MLOps 워크플로의 복잡성과 데이터 처리 및 저장의 분산된 특성이 결합되어 보안 노력이 복잡해지고 사이버 위협에 대한 취약성이 높아집니다.
- MLOps 도구의 복잡성
MLOps 도구와 관련된 복잡성은 글로벌 MLOps 시장에 중대한 과제로 부상하고 있습니다. 이러한 도구는 머신 러닝 모델을 관리하고 배포하기 위한 고급 기능을 제공하지만, 복잡한 특성으로 인해 특히 전문 지식이나 리소스가 부족한 조직의 경우 도입에 대한 장벽이 되는 경우가 많습니다. 복잡한 MLOps 도구는 효과적으로 탐색하기 위해 광범위한 교육과 기술 능숙성이 필요할 수 있으며, 이로 인해 구현 시간이 길어지고 비용이 높아지며 오류 위험이 증가합니다. 또한 MLOps 분야의 혁신 속도가 빨라지면서 조직이 진화하는 기술과 모범 사례에 발맞추기 위해 고군분투함에 따라 이러한 과제가 더욱 복잡해집니다.
이 시장 보고서는 최근의 새로운 개발, 무역 규정, 수출입 분석, 생산 분석, 가치 사슬 최적화, 시장 점유율, 국내 및 지역 시장 참여자의 영향, 새로운 수익 창출처, 시장 규정의 변화, 전략적 시장 성장 분석, 시장 규모, 범주 시장 성장, 응용 분야 틈새 시장 및 지배력, 제품 승인, 제품 출시, 지리적 확장, 시장의 기술 혁신에 대한 분석 기회를 제공합니다. 시장에 대한 자세한 정보를 얻으려면 Data Bridge Market Research for an Analyst Brief에 문의하세요. 저희 팀은 시장 성장을 달성하기 위한 정보에 입각한 시장 결정을 내리는 데 도움을 드립니다.
최근 개발 사항
- 2021년 5월, Google Cloud는 머신 러닝 모델을 빌드, 훈련, 배포하기 위한 다양한 서비스를 통합하여 AI 개발 라이프사이클을 간소화하는 관리형 머신 러닝 플랫폼인 Vertex AI를 출시했습니다. 이 이니셔티브는 모델 개발 및 배포 프로세스를 간소화하여 조직이 AI 도입을 가속화하고 비즈니스 목표를 효율적으로 달성할 수 있도록 하는 것을 목표로 했습니다.
- DataRobot은 2019년 9월 ParallelM을 인수한 후 MLOps 솔루션을 출시하여 기업 전체에서 머신 러닝 모델의 중앙 집중식 배포, 모니터링 및 거버넌스를 위한 모델 관리 및 모니터링 기능을 통합하여 궁극적으로 AI 배포 효율성을 향상시켰습니다. 이 이니셔티브는 전체 머신 러닝 라이프사이클을 자동화하고 관리하기 위한 포괄적인 솔루션을 제공하여 조직이 AI 프로젝트에서 측정 가능한 가치를 도출하는 데 직면한 과제를 해결하는 것을 목표로 했습니다.
글로벌 MLOP 시장 범위
시장은 구성 요소, 배포 모드, 조직 규모 및 산업 수직을 기준으로 세분화됩니다. 이러한 세그먼트 간의 성장은 산업의 빈약한 성장 세그먼트를 분석하고 사용자에게 핵심 시장 애플리케이션을 식별하기 위한 전략적 결정을 내리는 데 도움이 되는 귀중한 시장 개요와 시장 통찰력을 제공하는 데 도움이 됩니다.
요소
- 플랫폼
- 서비스
배포 모드
- 온 프레미스
- 구름
- 잡종
조직 규모
- 대기업
- 중소기업(SME)
산업 수직
- 금융 서비스(BFSI)
- 조작
- 정보기술(IT) 및 통신
- 소매 및 전자 상거래
- 헬스케어
- 기타
MLOP 시장 지역 분석/통찰력
위에 언급된 대로, 지역, 구성 요소, 배포 모드, 조직 규모 및 산업 분야별로 시장을 분석하고 시장 규모에 대한 통찰력과 추세를 제공합니다.
시장에서 다루는 지역은 북미, 남미, 유럽, 아시아 태평양, 중동 및 아프리카입니다. 글로벌 MLOP 시장 보고서에서 다루는 국가는 미국, 캐나다, 멕시코, 브라질, 아르헨티나, 남미 기타 지역, 독일, 이탈리아, 영국, 프랑스, 스페인, 네덜란드, 벨기에, 스위스, 터키, 러시아, 유럽 기타 지역, 일본, 중국, 인도, 한국, 호주, 싱가포르, 말레이시아, 태국, 인도네시아, 필리핀, 아시아 태평양 기타 지역, 사우디 아라비아, UAE, 남아프리카, 이집트, 이스라엘, 중동 및 아프리카 기타 지역입니다.
북미는 여러 가지 이유로 글로벌 MLOps 시장을 지배하고 있습니다. 이 지역은 머신 러닝과 데이터 과학을 전문으로 하는 기술 회사, 연구 기관, 숙련된 전문가로 구성된 강력한 생태계를 자랑하며, 혁신을 촉진하고 시장 리더십을 주도하고 있습니다. 또한 북미는 다양한 비즈니스 요구 사항을 충족하는 확장 가능한 인프라와 고급 MLOps 솔루션을 제공하는 많은 선도적인 클라우드 서비스 공급업체의 본거지입니다. 게다가 이 지역의 강력한 규제 환경과 성숙한 기업 시장이 결합되어 규정 준수, 거버넌스 및 위험 관리를 보장하기 위해 MLOps 관행의 광범위한 채택을 장려합니다. 게다가 북미의 기업가 문화와 벤처 캐피털 생태계는 MLOps 분야에서 신생 기업과 신흥 기업의 빠른 성장을 촉진하여 글로벌 시장에서 이 지역의 지배력에 기여합니다. 전반적으로 기술 전문성, 지원 인프라, 규제 프레임워크, 기업가적 역동성의 융합은 북미를 전 세계적으로 MLOps의 발전과 채택을 주도하는 선두 주자로 자리 매김합니다.
아시아 태평양 지역은 몇 가지 주요 요인으로 인해 글로벌 MLOPs 시장에서 가장 빠르게 성장하는 지역으로 부상하고 있습니다. 이 지역은 다양한 산업에서 빠른 디지털 전환을 목격하고 있으며, 비즈니스 효율성과 경쟁력을 강화하기 위해 머신 러닝 및 AI 기술의 도입을 촉진하고 있습니다. 아시아 태평양의 조직이 데이터 기반 통찰력의 전략적 중요성을 점점 더 인식함에 따라 머신 러닝 모델의 개발, 배포 및 관리를 간소화하기 위한 MLOps 솔루션에 대한 수요가 증가하고 있습니다.
보고서의 지역 섹션은 또한 현재 및 미래 시장 추세에 영향을 미치는 국내 시장의 개별 시장 영향 요인과 규제 변화를 제공합니다. 하류 및 상류 가치 사슬 분석, 기술 추세, 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세의 영향 및 무역 경로가 지역 데이터의 예측 분석을 제공하는 동안 고려됩니다.
경쟁 환경 및 MLOP 시장 점유율 분석
시장 경쟁 구도는 경쟁자에 대한 세부 정보를 제공합니다. 포함된 세부 정보는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 애플리케이션 우세입니다. 위에 제공된 데이터 포인트는 시장과 관련된 회사의 초점에만 관련이 있습니다.
시장에서 활동하는 주요 기업은 다음과 같습니다.
- 데이터브릭스(미국)
- 도미노 데이터 랩(미국)
- Kubeflow(Google 제공)(미국)
- Amazon SageMaker(미국)
- Paperspace Gradient (미국)
- Fiddler AI(미국)
- MLflow(Databricks 제공)(미국)
- 발로하이(핀란드)
- 파키더름(미국)
- ZenML(독일)
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.