Global Fully Homomorphic Encryption Market
시장 규모 (USD 10억)
연평균 성장률 : %
예측 기간 |
2024 –2031 |
시장 규모(기준 연도) |
USD 297.62 Billion |
시장 규모(예측 연도) |
USD 550.87 Billion |
연평균 성장률 |
|
주요 시장 플레이어 |
글로벌 완전 동형 암호화 시장, 구성 요소(솔루션, 서비스), 애플리케이션(콜 라우팅 및 대기열, 데이터 통합 및 기록, 채팅 품질 및 모니터링, 실시간 의사 결정, 인력 최적화(WFO)), 조직 규모(중소기업(SME), 대기업), 배포 모델(퍼블릭 클라우드, 프라이빗 클라우드, 하이브리드 클라우드), 수직(은행, 금융 서비스 및 보험(BFSI), 소비재 및 소매, 정부 및 공공 부문, 의료 및 생명 과학, 제조, 미디어 및 엔터테인먼트, 통신 및 정보 기술 지원 서비스(ITES), 기타) - 산업 동향 및 2031년까지의 예측.
완전 동형 암호화 시장 분석 및 규모
완전 동형 암호화(FHE) 시장은 암호화된 데이터에 대한 계산을 수행할 수 있는 능력으로 인해 산업 전반에서 수요가 증가하고 있습니다. FHE를 사용하면 사용자는 민감한 정보를 해독하지 않고도 처리할 수 있어 종단 간 보안이 보장됩니다. 이 기능은 특히 금융, 의료, 클라우드 컴퓨팅 과 같이 개인 정보 보호와 데이터 보호가 가장 중요한 분야에서 가치가 있습니다. FHE 기술이 발전함에 따라 시장은 안전하고 개인 정보를 보호하는 데이터 처리 애플리케이션에 대한 채택이 계속 증가하고 있습니다.
Data Bridge Market Research는 2023년에 2억 9,762만 달러였던 글로벌 완전 동형 암호화 시장을 분석하고, 2031년까지 5억 5,087만 달러에 도달할 것으로 예상하며, 2024-2031년 예측 기간 동안 CAGR은 8.00%입니다. Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석, 페슬 분석이 포함됩니다.
보고 범위 및 시장 세분화
보고서 메트릭 |
세부 |
예측 기간 |
2024-2031 |
기준 연도 |
2023 |
역사적 연도 |
2022 (2016-2021년까지 사용자 정의 가능) |
양적 단위 |
매출은 백만 달러, 볼륨은 단위, 가격은 달러로 표시 |
다루는 세그먼트 |
구성 요소(솔루션, 서비스), 판매 채널(직접 채널, 유통 채널), 기업 규모(중소기업(SME), 대기업), 애플리케이션(안전한 데이터 계산, 데이터 개인 정보 보호, 데이터 수익화 , 규정 준수), 최종 사용(은행, 금융 서비스 및 보험(BFSI), 의료, 정부, 산업, IT 및 통신, 제조, 에너지 및 유틸리티, 기타) |
적용 국가 |
미국, 캐나다 및 멕시코(북미), 독일, 프랑스, 영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양(APAC), 사우디 아라비아, UAE, 이스라엘, 이집트, 남아프리카, 중동 및 아프리카(MEA)의 일부인 기타 중동 및 아프리카(MEA), 남미의 일부인 브라질, 아르헨티나 및 기타 남미 |
시장 참여자 포함 |
Microsoft(미국), IBM(미국), Galois, Inc.(미국), CryptoExperts(프랑스), Enveil(미국), Huawei Cloud Computing Technologies Co., Ltd(중국), Duality(미국), ShieldIO(미국), Cosmian(프랑스), Cornami, Inc.(미국), DESILO, INC(한국), Intel Corporation(미국), Inpher(미국), Thales(프랑스), Netskope, Inc.(미국), Zama(인도), Zaiku Group LTD(영국) |
시장 기회 |
|
시장 정의
완전 동형 암호화(FHE)는 복호화할 필요 없이 암호화된 데이터에 대해 직접 계산을 수행할 수 있는 고급 암호화 기술입니다. 즉, 민감한 정보는 처리 중에 암호화된 상태로 유지되어 클라우드 컴퓨팅과 같은 시나리오에서 안전한 데이터 분석 및 계산이 가능합니다. FHE는 계산을 수행하는 엔터티조차도 암호화되지 않은 원본 데이터에 액세스할 수 없도록 하여 데이터 프라이버시를 보호합니다. 안전한 데이터 아웃소싱 및 기밀 계산을 포함한 다양한 애플리케이션에서 프라이버시를 보호하는 데 중요한 의미를 갖습니다.
글로벌 완전 동형 암호화 시장 역학
운전자
- 완전 동형 암호화와 관련된 기술적 발전
지속적인 연구 노력으로 FHE 알고리즘의 효율성과 성능이 개선되어 실제 응용 프로그램에 더욱 실용적으로 사용되고 있습니다. 하드웨어 가속, 알고리즘 향상 및 프로토콜 개발의 최적화로 인해 FHE와 전통적으로 연관된 계산 오버헤드가 줄어들어 더 광범위한 채택이 촉진되고 있습니다. FHE가 더 쉽게 접근 가능하고 확장 가능해짐에 따라 금융, 의료 및 클라우드 컴퓨팅과 같은 산업은 처리 중에 민감한 데이터를 보호하기 위해 이 기술을 점점 더 많이 도입하고 있습니다. FHE의 기술적 진화는 주요 촉매로, 장벽을 해결하고 다양한 부문에 적용 가능성을 확대하여 시장 성장을 촉진합니다.
- 정부 기관의 완전 동형 암호화 기술에 대한 수요 증가
Governments worldwide are prioritizing data security and privacy, especially in sensitive areas such as defense, intelligence, and public services. FHE enables secure computation on encrypted data, allowing government agencies to leverage advanced analytics and cloud services without compromising sensitive information. The rising threat of cyber-attacks and data breaches has spurred governments to adopt FHE as a robust solution to safeguard classified and confidential data, contributing significantly to the growing global market for fully homomorphic encryption technologies.
Opportunities
- Rising Demand for Privacy-Preserving Solutions Drives Adoption of Virtualization Technologies
As businesses and individuals prioritize data security, the adoption of virtualization technologies, specifically FHE, has become crucial. FHE's ability to enable computations on encrypted data aligns with the growing need for robust privacy measures in various industries, such as finance, healthcare, and cloud computing. This trend presents a lucrative opportunity for the global FHE market to cater to the rising demand for advanced cryptographic solutions that safeguard sensitive information in an increasingly digitized world.
- Rising Interest of Machine Learning on Encrypted Data from Different Industries
FHE allows computation on encrypted data without the need for decryption, ensuring privacy and security. This capability is particularly valuable for training machine learning models on sensitive datasets, such as healthcare records or financial transactions, while preserving confidentiality. The FHE market is witnessing increased interest from industries seeking to leverage machine learning while maintaining data privacy, thereby addressing a crucial need for secure and confidential data processing in the evolving landscape of artificial intelligence applications. This technology holds promise for fostering trust and compliance in data-driven industries.
Restraints/Challenges
- High Cost of Homomorphic Encryption Solutions
Implementing FHE often requires substantial computational resources and specialized hardware, increasing the overall expenses for organizations. The complexity of FHE algorithms and the need for powerful computing infrastructure contribute to elevated deployment costs. Additionally, the expertise required for implementation and maintenance adds to the financial burden. As a result, many businesses, particularly smaller ones, may find the initial investment in FHE prohibitive, limiting widespread adoption and hindering the market's growth.
- Lack of Technical Expertise Constrains the Implementation of FHE Solutions
Implementation of FHE solutions requires specialized knowledge in advanced cryptography and encryption techniques, which is not widely prevalent. Many organizations and individuals may struggle to effectively deploy and manage FHE systems due to the complexity involved. The shortage of skilled professionals hampers the widespread adoption of FHE across various industries, limiting its potential impact on data security and privacy.
This global fully homomorphic encryption market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on global fully homomorphic encryption market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
Recent Developments
- In 2020, IBM Security introduced a service facilitating experimentation with fully homomorphic encryption (FHE), a groundbreaking technology allowing data to remain encrypted during cloud processing, enhancing privacy and security for organizations exploring advanced cryptographic solutions
- In 2020, U.S.-based data security firm Enveil secured approximately $10 million in funding for enterprise-scale homomorphic encryption. The company aims to enable secure collaboration, data sharing, and monetization, emphasizing the growing interest and investment in advanced encryption techniques for diverse applications
- In 2020, Microsoft partnered with Intel to develop a secure enclave for confidential computing, demonstrating a collaborative effort to enhance data security. This initiative reflects the industry's focus on creating secure environments for sensitive information, leveraging confidential computing technologies
- In 2020, IBM collaborated with Intel to develop a secure enclave for confidential computing, emphasizing the joint commitment to advancing secure computing practices. This partnership highlights the significance of industry collaboration in addressing the evolving challenges of data security and privacy
Global Fully Homomorphic Encryption Market Scope
The global fully homomorphic encryption market is segmented on the basis of component, sales channel, enterprise size, application and end-use. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Component
- Solution
- Encrypted Data Analytics
- Encrypted AI/ML Data Modelling
- Encrypted Data Linkage
- 암호화된 데이터베이스 쿼리
- 암호화된 생체 인식 및 행동 데이터
- 서비스
- 전문적인
- 관리됨
판매 채널
- 직접 채널
- 유통 채널
기업 규모
- 중소기업(SME)
- 대기업
애플리케이션
- 안전한 데이터 계산
- 데이터 개인정보 보호
- 데이터 수익화
- 규정 준수
최종 사용
- 은행, 금융 서비스 및 보험(BFSI)
- 헬스케어
- 정부
- 산업
- IT 및 통신
- 조작
- 에너지 및 유틸리티
- 다른
클라우드 기반 컨택센터 시장 지역 분석/통찰력
글로벌 완전 동형 암호화 시장을 분석하고, 위에 언급된 대로 국가, 구성 요소, 판매 채널, 기업 규모, 응용 프로그램 및 최종 용도별로 시장 규모에 대한 통찰력과 추세를 제공합니다.
글로벌 완전 동형 암호화 시장 보고서에서 다루는 국가는 다음과 같습니다. 북미의 미국, 캐나다 및 멕시코, 유럽의 독일, 프랑스, 영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽 국가, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양(APAC), 사우디 아라비아, UAE, 이스라엘, 이집트, 남아프리카 공화국, 중동 및 아프리카(MEA)의 일부인 기타 중동 및 아프리카(MEA), 남아메리카의 일부인 기타 남아메리카.
북미는 소규모 및 중규모 기업의 급증과 첨단 의료 시설의 확산에 힘입어 글로벌 완전 동형 암호화 시장을 지배하고 있습니다. 이 지역의 의료 부문 확장과 동형 암호화 기술의 채택 증가는 시장 성장을 강화합니다. 이 암호화 기술의 널리 퍼진 사용은 특히 의료와 같이 강력한 보호를 요구하는 부문에서 데이터 보안을 강화하는 데 중요한 역할을 한다는 것을 반영합니다.
아시아 태평양 지역은 급속한 산업화와 기업의 동형 암호화 솔루션 채택 증가로 인해 가장 높은 연평균 성장률을 경험할 것으로 예상됩니다. 이 지역의 은행 및 금융 산업의 지속적인 성장과 확장은 예측 기간 동안 시장의 견고한 발전에 더욱 기여할 것으로 예상되며, 이러한 부문에서 데이터 보안 조치의 중요성이 커지고 있음을 강조합니다.
보고서의 국가 섹션은 또한 개별 시장 영향 요인과 국내 시장의 현재 및 미래 트렌드에 영향을 미치는 규제 변화를 제공합니다. 다운스트림 및 업스트림 가치 사슬 분석, 기술 트렌드 및 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드와의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세 및 무역 경로의 영향이 국가 데이터에 대한 예측 분석을 제공하는 동안 고려됩니다.
경쟁 환경 및 글로벌 완전 동형 암호화 시장 점유율 분석
글로벌 완전 동형 암호화 시장 경쟁 구도는 경쟁자별 세부 정보를 제공합니다. 포함된 세부 정보에는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 사이트 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 애플리케이션 우위가 있습니다. 제공된 위의 데이터 포인트는 글로벌 완전 동형 암호화 시장과 관련된 회사의 초점에만 관련이 있습니다.
글로벌 완전 동형 암호화 시장에서 활동하는 주요 업체는 다음과 같습니다.
- 마이크로소프트(미국)
- IBM(미국)
- Galois, Inc. (미국)
- CryptoExperts(프랑스)
- 엔베일(미국)
- Huawei Cloud Computing Technologies Co., Ltd (중국)
- 듀얼리티(미국)
- ShieldIO(미국)
- 코스미안(프랑스)
- 코르나미 주식회사(미국)
- DESILO, INC.(한국)
- 인텔 코퍼레이션(미국)
- 인퍼(미국)
- 탈레스(프랑스)
- 넷스코프 주식회사(미국)
- 자마(인도)
- 자이쿠 그룹 유한회사(영국)
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.