Global Deep Learning In Machine Vision Market
시장 규모 (USD 10억)
연평균 성장률 :
%

![]() |
2025 –2032 |
![]() |
USD 5.13 Billion |
![]() |
USD 13.18 Billion |
![]() |
|
![]() |
|
머신 비전 분야의 글로벌 딥 러닝 시장 세분화: 제품(하드웨어, 소프트웨어 및 서비스), 애플리케이션(검사, 이미지 분석, 이상 감지, 객체 분류, 객체 추적, 카운팅, 바코드 감지, 특징 감지, 위치 감지, 광학 문자 인식, 얼굴 인식, 인스턴스 분할 등), 객체(이미지 및 비디오), 수직(전자, 제조, 자동차 및 운송, 식음료, 항공우주, 의료, 건축 및 자재, 전력 등) - 산업 동향 및 2032년까지의 전망
머신 비전 시장 규모에서의 딥 러닝
- 머신 비전 분야의 글로벌 딥러닝 시장 규모는 2024년에 51억 3천만 달러 로 평가되었으며 2032년에는 131억 8천만 달러 에 이를 것으로 예상됩니다.
- 2025년부터 2032년까지의 예측 기간 동안 시장은 주로 자동화된 품질 검사에 대한 수요 증가에 의해 주도되어 12.50%의 CAGR로 성장할 것으로 예상됩니다.
- 이러한 성장은 제조, 의료, 자동차와 같은 산업에서 AI 기반 이미지 인식 의 채택 증가와 머신 비전 시스템 사용 확대에 의해 촉진됩니다.
머신 비전 시장 분석에서의 딥 러닝
- 머신 비전 시장의 딥 러닝은 자동화된 품질 검사에 대한 수요 증가, AI 기반 이미지 인식의 채택 증가, 다양한 부문에 걸친 산업 자동화와 머신 비전의 통합으로 인해 상당한 성장을 경험하고 있습니다.
- 고성능 컴퓨팅, 엣지 AI, 딥 뉴럴 네트워크의 발전으로 비전 기반 시스템의 기능이 향상되어 제조, 의료, 자동차 산업에서 실시간 의사 결정, 결함 감지, 프로세스 자동화 개선이 가능해졌습니다.
- 북미는 선도적인 기술 기업의 강력한 존재감, 활발한 R&D 투자, 자동차 및 전자 산업과 같은 산업에서 AI 기반 자동화의 광범위한 채택으로 인해 머신 비전 시장에서 딥 러닝을 주도하고 있습니다.
- 예를 들어 미국에서는 NVIDIA와 Cognex와 같은 회사들이 품질 관리를 강화하고 생산 프로세스를 간소화하기 위해 AI 기반 비전 시스템을 개발하고 있습니다.
- AI 기반 결함 감지, 딥 러닝 기반 객체 추적, 로봇 공학에 머신 비전 통합과 같은 새로운 추세는 머신 비전 분야의 딥 러닝 환경을 변화시켜 현대 산업 자동화 및 품질 보증의 핵심 구성 요소가 되도록 하고 있습니다.
머신 비전 시장 세분화의 보고서 범위 및 딥 러닝
속성 |
머신 비전의 딥 러닝 주요 시장 통찰력 |
다루는 세그먼트 |
|
포함 국가 |
북아메리카
유럽
아시아 태평양
중동 및 아프리카
남아메리카
|
주요 시장 참여자 |
|
시장 기회 |
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 세분화, 지리적 범위 및 주요 업체와 같은 시장 시나리오에 대한 통찰력 외에도 심층적인 전문가 분석, 지리적으로 대표되는 회사별 생산 및 용량, 유통업체 및 파트너의 네트워크 레이아웃, 상세하고 업데이트된 가격 추세 분석 및 공급망 및 수요의 적자 분석이 포함됩니다. |
머신 비전 시장 동향에서의 딥 러닝
“AI 기반 결함 탐지의 발전”
- 머신 비전 시장에서 딥 러닝을 형성하는 주요 추세는 제조, 자동차, 전자와 같은 산업에서 더 높은 정밀도와 인적 오류 감소의 필요성에 따라 AI 기반 결함 감지의 채택이 증가하고 있다는 것입니다.
- 기업들은 품질 관리 프로세스를 개선하고 결함을 최소화하며 생산 효율성을 개선하기 위해 딥 러닝 알고리즘, 엣지 컴퓨팅 , 실시간 비전 분석을 활용하고 있습니다.
- 예를 들어, 2023년 10월 Cognex Corporation은 제조 정확도를 향상하고 자동화 검사를 간소화하기 위해 딥 러닝 기반 결함 감지 기능을 갖춘 In-Sight 3800 비전 시스템을 출시했습니다.
- AI 기반 이상 감지, 자동화된 근본 원인 분석, 예측 유지 관리 와 같은 고급 기술이 머신 비전 시스템에 통합되어 결함 식별을 최적화하고 운영 중단 시간을 줄이고 있습니다.
- 이러한 추세는 생산 품질을 향상시키고 낭비를 줄이며 AI 기반 시각 검사 시스템 도입을 촉진하여 머신 비전 산업의 딥 러닝을 혁신하고 기업의 효율성과 비용 효율성을 더욱 높이고 있습니다.
머신 비전 시장 역학에서의 딥 러닝
운전사
“제조업에서 AI 기반 품질 검사 도입 증가”
- 제조 산업에서 AI 기반 품질 검사에 대한 의존도가 높아지면서 머신 비전 시장의 딥 러닝은 더 높은 정확도, 효율성 및 결함 감지에 대한 필요성에 따라 급속한 성장을 목격하고 있습니다.
- 기업들은 실시간 시각 검사를 강화하고, 인적 오류를 줄이며, 일관성과 출력 품질을 개선하기 위해 생산 라인을 최적화하기 위해 머신 비전 시스템을 딥 러닝 알고리즘과 통합하고 있습니다.
- 예를 들어, 2024년 4월 Siemens는 NVIDIA와 협력하여 AI 기반 머신 비전 솔루션을 제조 프로세스에 통합하여 자동화된 품질 관리를 강화하고 생산 결함을 최소화했습니다.
- AI 기반 비전 시스템은 예측 유지 관리, 자동 이상 감지 및 실시간 결함 분류를 가능하게 하여 운영 비용을 절감하고 제조 정밀도를 향상시킵니다.
- 이 드라이버는 다양한 산업 분야에서 생산 효율성을 높이고, 가동 중지 시간을 최소화하고, 전반적인 제품 품질을 개선함으로써 머신 비전 시장에서 딥 러닝의 성장을 가속화할 예정입니다.
기회
"헬스케어 분야에서 AI 기반 비전 시스템 도입 증가"
- 의료 산업이 의료 영상 , 진단 및 로봇 지원 수술을 위해 AI 기반 비전 시스템을 점점 더 많이 도입함에 따라 머신 비전 시장의 딥 러닝은 상당한 확장을 앞두고 있습니다.
- 자동화된 이미지 분석, 이상 감지 및 실시간 환자 모니터링에 대한 수요는 의료 시술의 정확성과 효율성을 높이기 위해 딥 러닝 기반 비전 솔루션에 대한 투자를 촉진하고 있습니다.
- 예를 들어, GE Healthcare는 2025년 1월에 암 및 신경 질환과 같은 질병의 조기 발견을 개선하기 위해 딥 러닝을 활용하는 AI 기반 의료 영상 시스템을 출시했습니다.
- 의료 서비스 제공자와 연구 기관은 정밀 진단을 가능하게 하고 인적 오류를 줄이기 위해 병리학, 방사선학 및 로봇 수술 에 딥 러닝 비전 기술을 통합하고 있습니다.
- 이 기회는 의료 영상 혁신, 환자 결과 개선, AI 기반 의료 혁신 촉진을 통해 머신 비전 시장의 딥 러닝에서 장기적인 성장을 촉진할 것으로 예상됩니다.
제지/도전
"높은 구현 비용 및 통합 복잡성"
- 머신 비전 시장의 딥 러닝은 구현 비용이 높고 AI 기반 비전 시스템을 기존 산업 워크플로에 통합하는 데 따른 복잡성으로 인해 심각한 과제에 직면해 있습니다.
- 전문 하드웨어, 광범위한 데이터 학습 및 고급 컴퓨팅 능력에 대한 필요성으로 인해 딥 러닝 기반 비전 솔루션을 구축하는 것은 비용이 많이 드는 작업이며 특히 중소기업(SME)의 경우 더욱 그렇습니다.
- 예를 들어, 2024년 6월, 유럽의 한 자동차 제조업체는 높은 사전 비용과 AI 기반 자동화 도구에 대한 직원 재교육 필요성으로 인해 AI 기반 비전 검사 시스템 구축이 지연되었습니다.
- 또한 기존 시스템과의 호환성 문제, 숙련된 AI 전문가 부족, 지속적인 알고리즘 개선 필요성으로 인해 다양한 산업에서 원활한 도입이 어렵습니다.
- 이러한 과제를 극복하려면 비용 효율적인 AI 모델, 확장 가능한 딥 러닝 솔루션, 산업 응용 분야에서 보다 원활한 통합을 촉진하고 광범위한 채택을 촉진하기 위한 전략적 파트너십이 필요합니다.
머신 비전 시장 범위의 딥 러닝
시장은 제공 품목, 응용 분야, 대상, 수직 유형을 기준으로 세분화됩니다.
분할 |
하위 세분화 |
제공함으로써 |
|
응용 프로그램별 |
|
객체별 |
|
수직별 |
|
머신 비전 시장 지역 분석에서의 딥 러닝
“북미는 머신 비전 시장의 딥러닝에서 가장 큰 영향력을 가진 지역입니다.”
- 북미는 고도로 발달된 AI 및 자동화 생태계를 자랑하며 머신 비전 애플리케이션에서 딥 러닝 기술 도입을 가속화하고 있습니다.
- 이 지역의 잘 확립된 산업 및 제조 부문은 딥 러닝을 기반으로 하는 자동화된 품질 관리, 결함 감지 및 예측 유지 관리 솔루션에 대한 수요를 촉진합니다.
- 주요 AI 및 머신 비전 기업과 최고의 연구 기관은 딥 러닝 기반 비전 시스템의 지속적인 혁신과 대규모 구현에 기여합니다.
- 이러한 요소들은 집합적으로 북미를 주도적인 시장으로 자리매김하여 머신 비전 산업의 딥 러닝 혁신, 투자 및 지속적인 확장을 촉진합니다.
“북미가 가장 높은 성장률을 기록할 것으로 전망된다”
- 제조, 의료, 자동차 등 산업 전반에 걸쳐 자동화 및 AI 기반 품질 관리 시스템의 도입이 증가함에 따라 시장 성장이 촉진되고 있습니다.
- 결함 감지, 객체 인식, 예측 유지 관리를 포함한 머신 비전에서 딥 러닝의 적용이 확대되면서 고급 솔루션에 대한 수요가 증가하고 있습니다.
- 스마트 공장, 산업 4.0, AI 기반 산업 자동화에 대한 정부 이니셔티브와 투자는 머신 비전 기술 도입을 가속화하고 있습니다.
- 이러한 요소들은 집합적으로 북미를 머신 비전 시장의 딥 러닝에서 가장 빠르게 성장하는 지역으로 자리매김하여 산업 전반에 걸쳐 혁신과 광범위한 배포를 촉진합니다.
머신 비전 시장 점유율에서의 딥 러닝
시장 경쟁 구도는 경쟁사별 세부 정보를 제공합니다. 여기에는 회사 개요, 회사 재무 상태, 매출 창출, 시장 잠재력, 연구 개발 투자, 신규 시장 진출, 글로벌 입지, 생산 시설 및 설비, 생산 능력, 회사의 강점과 약점, 제품 출시, 제품 종류 및 범위, 응용 분야별 우위 등이 포함됩니다. 위에 제공된 데이터는 해당 회사의 시장 집중도와 관련된 데이터입니다.
시장에서 활동하는 주요 시장 리더는 다음과 같습니다.
- 코그넥스 코퍼레이션(미국)
- 인텔 코퍼레이션(미국)
- 내셔널 인스트루먼트(National Instruments Corp.)(미국)
- SICK AG(독일)
- Datalogic SpA(이탈리아)
- STEMMER IMAGING AG INH ON(독일)
- Abto Software(우크라이나)
- Zebra Technologies Corp(미국)
- 오토닉스(한국)
- Basler AG(독일)
- Cyth Systems, Inc. (미국)
- 유레시스(벨기에)
- IDS 이미징 개발 시스템 GmbH(독일)
- 리웨이허츠(미국)
- MVTEC SOFTWARE GMBH(독일)
- 오므론 주식회사(일본)
- perClass BV(네덜란드)
- Qualitas Technologies(인도)
- RSIP 비전(이스라엘)
- USS Vision LLC(미국)
- Viska Automation Systems Ltd. T/A Viska Systems(아일랜드)
머신 비전 시장의 글로벌 딥 러닝의 최신 동향
- 2025년 1월, 엔비디아는 토요타, 오로라, 콘티넨탈 등 주요 자동차 회사와의 협력을 강화하여 고도로 자동화되고 자율 주행되는 차량 개발을 가속화했습니다. 엔비디아는 첨단 AI 기반 시각 처리 기능을 활용하여 자율주행 시스템의 안전성과 기능을 향상시키고 자율주행 기술 분야의 선두 주자로서의 입지를 강화하고자 합니다. 이러한 확장은 AI 기반 모빌리티 솔루션의 획기적인 발전을 촉진하여 자율주행 교통의 미래를 형성할 것으로 예상됩니다.
- 2024년 5월, Avnet, Inc.는 엔지니어링 팀이 멀티 카메라 기능을 갖춘 고성능 Edge AI 임베디드 제품을 신속하게 프로토타입으로 제작할 수 있도록 QCS6490 Vision-AI 개발 키트를 출시했습니다. 이 키트는 Qualcomm QCS6490 프로세서 기반의 에너지 효율적인 MSC SM2S-QCS6490 SMARC 컴퓨팅 모듈로 구동되어 다양한 산업 분야에서 AI 기반 비전 솔루션을 더욱 빠르게 구축할 수 있도록 지원합니다. 이 혁신은 AI 기반 비전 애플리케이션 도입을 가속화하고 다양한 분야의 효율성을 향상시킬 것으로 기대됩니다.
- 2024년 5월, 마이크로소프트는 텍스트와 이미지 입력을 모두 처리하도록 설계된 멀티모달 AI 모델인 GPT-4 Turbo with Vision을 출시했습니다. 이 모델은 고급 이미지 및 비디오 분석, 텍스트 생성, 광학 문자 인식(OCR), 객체 기반 처리 기능을 지원하여 다양한 애플리케이션을 향상시키고, 여러 산업 분야에서 AI 기반 자동화 도입을 촉진합니다. 이 모델의 도입은 AI 기반 이미지 처리에 혁신을 일으켜 비즈니스 운영 및 자동화 역량을 향상시킬 것으로 예상됩니다.
- 2024년 4월, 코그넥스(Cognex Corporation)는 AI를 2D 및 3D 비전 기술과 통합하여 검사 및 측정 프로세스를 개선하는 In-Sight L38 3D 비전 시스템을 출시했습니다. 3D 데이터가 포함된 2D 이미지를 생성함으로써, 이 시스템은 트레이닝을 간소화하고, 특징점 감지 정확도를 향상시키며, 일관된 검사 결과를 보장하여 산업 자동화 역량을 강화합니다. 이러한 발전은 품질 관리 및 제조 프로세스를 혁신하여 산업 애플리케이션의 정밀도와 효율성을 향상시킬 것으로 예상됩니다.
- 2024년 4월, IBM은 IBM Z 시스템용 성능 분석 솔루션인 z/OS용 IBM Z IntelliMagic Vision 소프트웨어 플랫폼을 출시했습니다. 맞춤형 노코드 시각화 기능과 유연한 데이터 분석 도구를 갖춘 이 플랫폼은 분석가들이 잠재적 위험을 파악하고 워크로드를 최적화하여 기업 IT 운영의 효율성과 안정성을 향상시킬 수 있도록 지원합니다. 이번 출시는 기업 IT 성능 향상, 운영 복원력 및 효율성 강화를 위한 IBM의 노력을 강조합니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.