>컴퓨터 비전 분야의 글로벌 딥 러닝 시장, 하드웨어(중앙 처리 장치(CPU), 그래픽 처리 장치(GPU), 기타), 솔루션(하드웨어, 소프트웨어, 서비스), 애플리케이션(이미지 인식, 음성 인식, 기타), 최종 사용자(자동차, 의료, 기타), 국가(미국, 캐나다, 멕시코, 브라질, 아르헨티나, 남미 기타, 독일, 프랑스, 이탈리아, 영국, 벨기에, 스페인, 러시아, 터키, 네덜란드, 스위스, 유럽 기타, 일본, 중국, 인도, 한국, 호주, 싱가포르, 말레이시아, 태국, 인도네시아, 필리핀, 아시아 태평양 기타, UAE, 사우디 아라비아, 이집트, 남아프리카, 이스라엘, 중동 및 아프리카 기타) - 산업 동향 및 2029년까지의 예측.
컴퓨터 비전 시장에서 딥 러닝의 시장 분석 및 통찰력
컴퓨터 비전 시장에서 딥 러닝은 2022년부터 2029년까지의 예측 기간 동안 시장 성장을 이룰 것으로 예상됩니다. Data Bridge Market Research는 컴퓨터 비전 시장에서 딥 러닝이 2022년부터 2029년까지의 예측 기간 동안 55.65%의 CAGR을 보일 것으로 분석했습니다.
딥 러닝은 기본적으로 여러 분야에서 뛰어난 실행을 나타내며 인간이 특정 유형의 지식을 얻는 방식을 모방하는 강렬한 머신 러닝 및 인공 지능 (AI) 도구를 말합니다. 여기에는 얼굴 인식 및 인덱싱, 사진 스타일링 또는 자율 주행 자동차의 머신 비전이 포함됩니다.
빠른 정보 저장 용량의 광범위한 개선은 시장 성장을 확대하는 중요한 요인이며, 컴퓨팅 파워와 병렬화의 증가와 품질 검사 및 자동화에 대한 증가하는 요구가 시장 성장을 주도하는 주요 요인으로 부상할 것입니다. 나아가, 하드웨어와 소프트웨어의 심층 학습과 기술적 발전, 기존 검사 시스템에 비해 3D 검사 시스템의 채택 증가는 시장 가치를 더욱 악화시킬 요인입니다. 그러나 기술 전문성의 부족과 빠르게 변화하는 컴퓨터 비전 기술에 대한 사용자 인식의 부족은 시장에 제약으로 작용합니다. 대부분의 조직이 방대한 양의 시각 데이터를 처리할 적절한 리소스와 컴퓨팅 파워가 부족할 수 있다는 사실은 예측 기간 내에 시장의 전반적인 성장을 방해할 수도 있습니다.
이에 더하여, 증가하는 기술 발전과 현대화는 예측 기간 내에 시장 성장을 위한 새로운 기회를 창출할 것으로 추정됩니다. 반면, 데이터 침해, 데이터 도난, 클라우드 데이터 이용 불가와 같은 클라우드 데이터 스토리지와 관련된 단점이 점점 더 만연해지고 있으며, 이는 시장에 도전이 될 수 있습니다.
This deep learning in computer vision market report provides details of new recent developments, trade regulations, import export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographical expansions, technological innovations in the market. To gain more info on deep learning in computer vision market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
Global Deep Learning in Computer Vision Market Scope and Market Size
The deep learning in computer vision market is segmented on the basis of hardware, solutions, applications and end-user. The growth amongst the different segments helps you in attaining the knowledge related to the different growth factors expected to be prevalent throughout the market and formulate different strategies to help identify core application areas and the difference in your target market.
- On the basis of hardware, the deep learning in computer vision market is segmented into central processing unit (CPU), graphics processing unit (GPU) and others
- On the basis of solutions, the deep learning in computer vision market is segmented into hardware, software and services
- Based on application, the deep learning in computer vision market is segmented into image recognition, voice recognition and others
- The deep learning in computer vision market is also segmented on the basis of end-user into automotive, healthcare and others
Deep Learning in Computer Vision Market Country Level Analysis
The deep learning in computer vision market is analyzed and market size, volume information is provided by hardware, solutions, applications and end-user as referenced above.
The countries covered in the deep learning in computer vision market report are U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, Israel, Egypt, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.
북미 지역은 이미지 및 패턴 인식의 높은 채택, 이 지역의 인공 지능 및 신경망에 대한 투자 증가로 인해 컴퓨터 비전 시장에서 딥 러닝을 지배하고 있습니다. 아시아 태평양 지역은 정부가 기술 회사에 컴퓨터 비전 애플리케이션을 위한 훈련 모델을 구축하기 위한 대규모 데이터 세트에 대한 액세스를 제공하는 등 다양한 정부의 전략적 이니셔티브로 인해 예측 기간 동안 상당한 성장을 이룰 것으로 예상됩니다.
컴퓨터 비전 시장 보고서의 딥 러닝의 국가 섹션은 또한 개별 시장 영향 요인과 국내 시장의 현재 및 미래 추세에 영향을 미치는 규제 변화를 제공합니다. 소비량, 생산 현장 및 양, 수입 수출 분석, 가격 추세 분석, 원자재 비용, 하류 및 상류 가치 사슬 분석과 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 주요 포인터 중 일부입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드와의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세 및 무역 경로의 영향이 국가 데이터의 예측 분석을 제공하는 동안 고려됩니다.
경쟁 환경 및 컴퓨터 비전 시장 점유율 분석에서의 딥 러닝
컴퓨터 비전 시장 경쟁 구도에서의 딥 러닝은 경쟁자별 세부 정보를 제공합니다. 포함된 세부 정보는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 애플리케이션 우세입니다. 위에 제공된 데이터 포인트는 컴퓨터 비전 시장에서 딥 러닝과 관련된 회사의 초점에만 관련이 있습니다.
컴퓨터 비전 시장 보고서에서 딥 러닝을 담당하는 주요 기업으로는 Accenture, IBM India Pvt Ltd, Circle Internet Services, Inc., Atlassian, Bitrise, CloudBees, Inc., Flexagon LLC, Infostretch Corporation, JetBrains sro, Kainos, Micro Focus, MVTECH Software GmbH, Clarifai Inc., Tordivel AS, SICK AG, JAI A/S, CEVA Inc., Synopsys Inc., Microsoft, Puppet, Red Hat, Inc., Spirent Communications, VMware, Inc. 등이 있습니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.