Global Big Data Analytics In Agriculture Market
시장 규모 (USD 10억)
연평균 성장률 : %
예측 기간 |
2023 –2030 |
시장 규모(기준 연도) |
USD 1.24 Billion |
시장 규모(예측 연도) |
USD 3.95 Billion |
연평균 성장률 |
|
주요 시장 플레이어 |
>농업 분야의 글로벌 빅데이터 분석 시장, 유형별(데이터 수집, 데이터 저장, 데이터 공유, 데이터 분석 등), 응용 분야별(작물 생산, 농장 장비, 날씨 및 화학 물질), 최종 사용자별(농부, 농업 규제 기관, 날씨 예보, 농약 및 농장 장비 산업) - 산업 동향 및 2030년까지의 예측.
농업 시장 분석 및 규모의 빅데이터 분석
농업에서의 빅데이터 분석은 농업 분야에서 생성된 방대하고 복잡한 데이터 세트에 고급 데이터 분석 기술을 적용하는 것을 말합니다. 여기에는 센서, 위성, 드론, 기상 관측소, 농장 장비와 같은 다양한 출처에서 방대한 양의 데이터를 수집, 처리 및 분석하여 귀중한 통찰력을 추출하고 농업 및 농업 관리에서 의사 결정 프로세스를 알리는 것이 포함됩니다.
Data Bridge Market Research는 2022년에 12억 4천만 달러였던 글로벌 농업 빅데이터 분석 시장이 2030년에는 39억 5천만 달러에 도달할 것으로 예상되며, 2023년에서 2030년까지의 예측 기간 동안 15.60%의 CAGR을 기록할 것으로 분석했습니다. "데이터 수집"은 데이터가 전체 분석 프로세스를 촉진하는 기본 요소이기 때문에 글로벌 농업 빅데이터 분석 시장의 유형 세그먼트를 지배합니다. Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 세분화, 지리적 범위, 주요 업체와 같은 시장 시나리오에 대한 통찰력 외에도 심층적인 전문가 분석, 지리적으로 표현된 회사별 생산 및 용량, 유통업체 및 파트너의 네트워크 레이아웃, 자세하고 업데이트된 가격 추세 분석, 공급망 및 수요의 적자 분석이 포함됩니다.
농업 시장 범위 및 세분화의 빅데이터 분석
보고서 메트릭 |
세부 |
예측 기간 |
2023년부터 2030년까지 |
기준 연도 |
2022 |
역사적 연도 |
2021 (2015-2020까지 사용자 정의 가능) |
양적 단위 |
매출은 10억 달러, 양은 톤, 가격은 미국 달러로 표시됨 |
다루는 세그먼트 |
유형(데이터 수집, 데이터 저장, 데이터 공유, 데이터 분석 등), 응용 분야(작물 생산, 농장 장비 , 날씨 및 화학 물질), 최종 사용자(농부, 농업 규제 기관, 날씨 예보, 농약 및 농장 장비 산업) |
적용 국가 |
미국, 북미의 캐나다 및 멕시코, 독일, 프랑스, 영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽 국가, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양의 기타 국가, 사우디 아라비아, UAE, 남아프리카 공화국, 이집트, 이스라엘, 중동 및 아프리카의 기타 국가, 브라질, 아르헨티나 및 남미의 기타 국가. |
시장 참여자 포함 |
NTT Data Corporation(일본), The Climate Corporation(미국), OnFarm(미국), Farmers Edge Inc.(캐나다), Agribiotix(미국), AgDNA(미국), Awhere(미국), Farmersedge(캐나다) 및 Conservis(미국) |
시장 기회 |
|
Market Definition
Gathering data from various sources in agriculture, such as sensors, satellites, drones, weather stations, and farm equipment. This data can include information about soil conditions, weather patterns, crop growth, livestock health, and more. Combining and integrating data from multiple sources and formats into a unified and structured dataset for analysis. This may involve data cleansing and transformation to ensure data quality. Big data analytics in agriculture aims to enhance productivity, reduce costs, increase sustainability, and contribute to global food security by harnessing the potential of data to make more informed and precise decisions throughout the agricultural value chain.
Global Big Data Analytics in Agriculture Market Dynamics
Drivers
- Increasing Availability of Data
The increasing availability of data from various sources, including sensors, satellites, and drones, is a primary driver. This data provides valuable insights into crop conditions, weather patterns, and soil health. Data availability is a critical factor in the success of big data analytics in agriculture. To effectively harness the power of data analytics in agriculture, it's essential to have access to a wide range of data from various sources.
- Technological Advancements
Advances in data analytics, machine learning, and IoT technologies enable more sophisticated data analysis, prediction, and decision support in agriculture. Advanced sensors, including soil moisture sensors, temperature sensors, and remote sensing devices mounted on drones and satellites, have become more affordable and accessible. These sensors provide real-time data on soil conditions, weather patterns, crop health, and more, allowing farmers to monitor their fields with precision.
Opportunities
- Precision Agriculture
Big data analytics enables precision agriculture by providing real-time insights. Farmers can optimize inputs such as water, fertilizer, and pesticides, resulting in higher yields and resource efficiency. Precision agriculture relies on the collection of vast amounts of data from various sources, including sensors, satellites, drones, and farm machinery. These data sources provide real-time information about soil conditions, weather patterns, crop health, and more. Big data analytics platforms aggregate and process this data to create a comprehensive picture of the farm.
- Market Intelligence
Farmers can use data analytics to monitor market trends, optimize pricing strategies, and make informed decisions about crop selection and planting. Market intelligence begins with data collection. This includes gathering information from diverse sources, such as government reports, trade publications, social media, weather data, commodity prices, and supply chain data. Big data analytics systems can process both structured and unstructured data from these sources.
Restraints/Challenges
- Data Privacy Concerns
Farmers may be hesitant to share their data due to privacy concerns and the fear of misuse by third parties. Agricultural data often includes personal information about farmers, such as their names, contact details, and financial data. Protecting this personal data from unauthorized access and misuse is crucial. Many agricultural technologies, such as GPS-enabled equipment and drones, collect location data. The exposure of this data can lead to privacy breaches and potential security risks if not properly safeguarded.
- Data Integration
Integrating data from different sources and formats can be complex. It requires standardized data formats and interoperability between various data systems. Oil moisture sensors, weather stations, GPS-equipped farm equipment, and livestock monitoring devices generate real-time data. Satellites and drones capture high-resolution images of fields, which provide insights into crop health and growth.
Impact and Current Market Scenario of Raw Material Shortage and Shipping Delays
Data Bridge Market Research offers a high-level analysis of the market and delivers information by keeping in account the impact and current market environment of raw material shortage and shipping delays. This translates into assessing strategic possibilities, creating effective action plans, and assisting businesses in making important decisions.
Apart from the standard report, we also offer in-depth analysis of the procurement level from forecasted shipping delays, distributor mapping by region, commodity analysis, production analysis, price mapping trends, sourcing, category performance analysis, supply chain risk management solutions, advanced benchmarking, and other services for procurement and strategic support.
Expected Impact of Economic Slowdown on the Pricing and Availability of Products
When economic activity slows, industries begin to suffer. The forecasted effects of the economic downturn on the pricing and accessibility of the products are taken into account in the market insight reports and intelligence services provided by DBMR. With this, our clients can typically keep one step ahead of their competitors, project their sales and revenue, and estimate their profit and loss expenditures.
Recent Development
- 2020년 11월, SAS Institute Inc.는 Boragen Inc.와 협력하여 작물 과학과 데이터 과학을 결합하여 작물 생명을 식물 질병으로부터 보호하는 플랫폼을 제공합니다. 이 회사들은 인공 지능 과 머신 러닝을 사용하여 데이터를 연구하고 실시간으로 피해를 예측합니다.
농업 시장 범위의 글로벌 빅데이터 분석
농업 분야의 글로벌 빅데이터 분석 시장은 유형, 애플리케이션 및 최종 사용자를 기준으로 세분화됩니다. 이러한 세그먼트 간의 성장은 산업의 빈약한 성장 세그먼트를 분석하고 사용자에게 귀중한 시장 개요와 시장 통찰력을 제공하여 핵심 시장 애플리케이션을 식별하기 위한 전략적 결정을 내리는 데 도움이 됩니다.
유형
- 데이터 캡처
- 데이터 저장
- 데이터 공유
- 데이터 분석
- 기타
애플리케이션
- 작물 생산
- 농장 장비
- 날씨
- 약
최종 사용자
- 농부들
- 농업 규제 기관
- 날씨 예보
- 농약
- 농장 장비 산업
농업 시장의 글로벌 빅데이터 분석 지역 분석/통찰력
농업 시장의 글로벌 빅데이터 분석을 통해 시장 규모에 대한 통찰력과 추세가 위에 언급된 국가, 유형, 응용 프로그램 및 최종 사용자별로 제공됩니다.
농업 시장 보고서의 글로벌 빅데이터 분석에서 다루는 국가는 북미의 미국, 캐나다 및 멕시코, 독일, 프랑스, 영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양의 기타 지역, 사우디 아라비아, UAE, 남아프리카, 이집트, 이스라엘, 중동 및 아프리카의 기타 지역, 브라질, 아르헨티나 및 남미의 기타 지역입니다.
아시아 태평양 지역은 농작물 상태를 미리 예측하기 위해 빅데이터 결과를 활용하는 기업이 많아 글로벌 농업 시장에서 빅데이터 분석 분야를 주도하고 있습니다.
보고서의 국가 섹션은 또한 개별 시장 영향 요인과 국내 시장의 현재 및 미래 트렌드에 영향을 미치는 규제 변화를 제공합니다. 다운스트림 및 업스트림 가치 사슬 분석, 기술 트렌드, 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드와의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세의 영향 및 무역 경로가 국가 데이터에 대한 예측 분석을 제공하는 동안 고려됩니다.
농업 시장 점유율 분석에서의 경쟁 환경과 글로벌 빅데이터 분석
농업 시장 경쟁 구도에서 글로벌 빅데이터 분석은 경쟁자에 대한 세부 정보를 제공합니다. 포함된 세부 정보는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭 및 범위, 응용 프로그램 우세입니다. 위에 제공된 데이터 포인트는 농업 시장에서 글로벌 빅데이터 분석과 관련된 회사의 초점에만 관련이 있습니다.
농업 분야의 글로벌 빅데이터 분석 시장에서 활동하는 주요 기업은 다음과 같습니다.
- NTT 데이터 코퍼레이션(일본)
- 기후 기업(미국)
- 온팜(미국)
- Farmers Edge Inc. (캐나다)
- 아그리바이오틱스(미국)
- AgDNA(미국)
- 어디든지 (미국)
- 파머스에지(캐나다)
- 컨서비스(미국)
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.