Global Artificial Intelligence In Healthcare Market
시장 규모 (USD 10억)
연평균 성장률 : %
예측 기간 |
2024 –2031 |
시장 규모(기준 연도) |
USD 14.64 Billion |
시장 규모(예측 연도) |
USD 414.30 Billion |
연평균 성장률 |
|
주요 시장 플레이어 |
|
>헬스케어 시장 세분화의 글로벌 인공지능, 제공(하드웨어, 소프트웨어 및 서비스), 기술(머신 러닝 및 자연어 처리), 애플리케이션(로봇 지원 수술, 가상 비서, 관리 워크플로우 보조, 연결된 기계, 진단, 임상 시험, 사기 탐지, 사이버 보안, 복용량 오류 감소, 실시간 모니터링, 정밀 의학, 개인 건강 및 간호 보조, 약물 개발, 발견, 진단, 임상 의사 결정 지원 및 기타), 최종 사용자(ACO, MCOS, 환자, 지불자, 제약, 생명 공학 회사, 의료 서비스 제공자 및 기타), 유통 채널(병원, 진료소 및 기타) - 산업 동향 및 2031년까지의 예측
헬스케어 시장 분석의 인공지능
의료 시장에서 인공 지능(AI)은 머신 러닝, 데이터 분석의 발전과 효율적인 의료 솔루션에 대한 수요 증가에 힘입어 빠르게 확장되고 있습니다. AI 기술은 진단, 환자 치료, 약물 발견 및 행정 프로세스를 포함한 의료의 다양한 측면을 변화시키고 있습니다. 이 시장은 예측 분석 , 가상 건강 보조원 및 로봇 수술 과 같은 응용 프로그램의 급증이 특징이며 , 이는 환자 결과와 운영 효율성을 향상시킵니다. 최근의 발전에는 AI 솔루션을 통합하기 위한 기술 회사와 의료 제공자 간의 파트너십과 개선된 임상 의사 결정을 위한 자연어 처리 및 컴퓨터 비전의 혁신이 포함됩니다. 개인화된 의학과 정밀 건강에 대한 관심이 커지면서 시장 성장이 더욱 촉진되어 AI가 환자 치료에 혁명을 일으킬 잠재력이 강조됩니다. 전반적으로 의료 분야의 AI 시장은 혁신과 투자를 위한 상당한 기회를 제공하여 보다 효율적이고 정확하며 대응력이 뛰어난 의료 생태계를 육성합니다.
헬스케어 시장 규모에서의 인공지능
글로벌 헬스케어 인공지능 시장 규모는 2023년에 146억 4천만 달러로 평가되었으며, 2031년까지 4,143억 달러에 도달할 것으로 예상되며, 2024년에서 2031년까지의 예측 기간 동안 CAGR은 51.87%입니다. Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 세분화, 지리적 범위, 주요 업체와 같은 시장 시나리오에 대한 통찰력 외에도 심층 전문가 분석, 환자 역학, 파이프라인 분석, 가격 분석 및 규제 프레임워크도 포함됩니다.
헬스케어 시장 동향 의 인공지능
“ AI 기반 진단 도구 도입”
The artificial intelligence (AI) in healthcare market is witnessing significant trends driven by technological advancements and evolving patient needs. One notable trend is the increasing adoption of AI-powered diagnostic tools, which enhance the accuracy and speed of disease detection. Innovations in machine learning algorithms and imaging technologies allow for earlier identification of conditions such as cancer and cardiovascular diseases, leading to timely interventions. In addition, AI is being integrated into electronic health records (EHRs) to streamline workflows and improve data management. This trend reflects a broader movement toward personalized medicine, where AI tools analyze vast datasets to tailor treatments to individual patients. As these technologies continue to evolve, they promise to transform the landscape of healthcare, improving outcomes and efficiency.
Report Scope and Artificial Intelligence in Healthcare Market Segmentation
Attributes |
Artificial Intelligence in Healthcare Key Market Insights |
Segments Covered |
|
Countries Covered |
U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E., South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America. |
Key Market Players |
NVIDIA Corporation (U.S.), Intel Corporation (U.S.), IBM (U.S.), Google LLC (U.S.), Microsoft (U.S.), General Vision Inc. (U.S.), Johnson & Johnson Services, Inc. (U.S.), Siemens Healthineers AG (Germany), Medtronic (Ireland), CloudMedx Health (U.S.), Agfa-Gevaert Group (Belgium), Oncora Medical (U.S.), Micron Technology, Inc. (U.S.), DeepMind Technologies Limited (U.K.), Welcome AI (U.S.), Koninklijke Philips N.V. (Netherlands), Precision Health AI (U.S.), Cloud (U.S.) |
Market Opportunities |
|
Value Added Data Infosets |
In addition to the insights on market scenarios such as market value, growth rate, segmentation, geographical coverage, and major players, the market reports curated by the Data Bridge Market Research also include depth expert analysis, patient epidemiology, pipeline analysis, pricing analysis, and regulatory framework. |
Artificial Intelligence in Healthcare Market Definition
Artificial intelligence (AI) in healthcare utilizes sophisticated software programs equipped with complex algorithms that replicate human senses for analyzing, interpreting, and understanding medical data. By evaluating symptoms and disease patterns, AI offers enhanced support, guidance, and feedback to healthcare providers, improving patient care. Beyond clinical diagnosis, AI plays a crucial role in drug development by streamlining the process of creating effective treatments tailored to individual patients. It facilitates the formulation of personalized medicine strategies and actively monitors patient conditions for better management. Moreover, the integration of AI in the healthcare sector has transformed drug discovery and development, making these processes more cost-effective, time-efficient, and innovative. As a result, AI significantly contributes to improving overall healthcare outcomes and efficiency.
Artificial Intelligence in Healthcare Market Dynamics
Drivers
- Increased Demand for Personalized Medicine
As healthcare increasingly shifts toward personalized treatments, artificial intelligence (AI) plays a pivotal role in enabling the analysis of vast amounts of patient data to create customized healthcare solutions. By leveraging advanced algorithms and machine learning techniques, AI can identify individual patient characteristics, preferences, and medical histories, allowing healthcare providers to tailor interventions and treatment plans specifically to each patient’s needs. This data-driven approach enhances the efficacy of treatments and improves patient engagement and satisfaction by considering their unique circumstances. Furthermore, AI's ability to analyze genomic data contributes significantly to the development of precision medicine, where therapies are optimized based on genetic profiles. As a result, the growing emphasis on personalized healthcare solutions serves as a key market driver, encouraging the integration of AI technologies across various healthcare sectors to improve outcomes and streamline care delivery.
- Technological Advancements in Artificial Intelligence (AI)
Innovations in artificial intelligence (AI) technologies, particularly in natural language processing (NLP) and computer vision, are significantly enhancing the capabilities and applications of AI in healthcare. NLP allows healthcare systems to interpret and analyze unstructured data, such as clinical notes and patient records, enabling more accurate information extraction and improved decision-making. This leads to better patient care and streamlined workflows for healthcare providers. Similarly, advancements in computer vision facilitate the analysis of medical images, aiding in faster and more precise diagnoses of conditions such as tumors or fractures. These technologies empower clinicians to make informed decisions, reduce diagnostic errors, and ultimately improve patient outcomes. As these innovations continue to evolve, they drive market growth by expanding the range of AI applications in healthcare, promoting efficiency, and enhancing the overall quality of care delivered to patients.
Opportunities
- Increasing Adoption of Wearable Technology
The increasing adoption of wearable technology for health monitoring presents significant opportunities for the integration of artificial intelligence (AI) to enhance patient care. Wearable devices, such as smartwatches and fitness trackers, collect vast amounts of real-time health data, including heart rate, activity levels, and sleep patterns. By incorporating AI algorithms, healthcare providers can analyze this data to generate actionable insights that enable proactive health management. For instance, AI can identify trends and anomalies in a patient's health metrics, allowing for timely interventions in chronic disease management, such as diabetes or cardiovascular conditions. This integration empowers patients to take control of their health and facilitates personalized treatment plans based on individual data. As a result, the convergence of wearable technology and AI presents a valuable market opportunity to improve health outcomes and optimize chronic disease management strategies.
- Integration with Electronic Health Records (EHRs)
Leveraging artificial intelligence (AI) to analyze electronic health record (EHR) data offers significant opportunities to enhance clinical decision support systems and improve overall patient management. By utilizing AI algorithms, healthcare providers can extract valuable insights from vast amounts of patient data, facilitating more informed clinical decisions and personalized treatment plans. AI can identify trends, alert clinicians to potential issues, and provide evidence-based recommendations, ultimately enhancing patient outcomes. In addition, AI integration streamlines administrative processes by automating routine tasks, reducing paperwork, and minimizing human error. This efficiency allows healthcare professionals to focus more on patient care rather than administrative burdens. As healthcare systems increasingly recognize the value of AI in optimizing EHR usage, the market opportunity for AI-driven solutions to improve patient management and clinical workflows continues to grow.
Restraints/Challenges
- Shortage of Skilled Professionals
The demand for professionals skilled in developing and managing artificial intelligence (AI) technologies in healthcare is rapidly increasing, driven by the growing adoption of AI solutions across the industry. However, a significant challenge lies in the shortage of qualified data scientists and AI specialists, which can hinder the pace of innovation and implementation. This talent gap limits healthcare organizations' ability to fully leverage AI capabilities, as they struggle to find individuals who possess the necessary expertise in both AI and healthcare domains. Without a skilled workforce to design, implement, and maintain AI systems, the potential benefits of these technologies may remain untapped. As healthcare continues to evolve, addressing this challenge will be crucial to ensuring that AI can effectively enhance patient care and streamline operations within the sector.
- High Implementation Costs
The initial costs associated with implementing artificial intelligence (AI) in healthcare can pose significant restraints, especially for smaller healthcare providers. These costs encompass technology acquisition, which involves investing in advanced software and hardware necessary for AI deployment. In addition, training staff to effectively use these AI systems requires financial resources and time, which smaller organizations may struggle to allocate. Ongoing maintenance and updates to ensure the AI solutions remain effective and compliant with evolving healthcare standards further add to the financial burden. For smaller healthcare providers with limited budgets, these expenses can deter them from adopting AI technologies, limiting their ability to enhance patient care and operational efficiency. As a result, addressing these cost-related challenges is crucial for facilitating broader AI adoption across the healthcare sector.
This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
Artificial Intelligence in Healthcare Market Scope
The market is segmented on the basis of offering, technology, application, end user, and distribution channel. The growth amongst these segments will help you analyse meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Offering
- Hardware
- Processor
- Memory processing unit
- Graphical processing unit
- Field programmable gate array
- ASIC
- Memory
- Network
- Software
- AI solutions
- On-premises
- Cloud
- AI platform
- Machine learning framework
- Application program interface (API)
- Services
- Deployment and integration
- Suport and maintenance
Technology
- Machine Learning
- Supervised learning
- Reinforcement learning
- Unsupervised learning
- Others
- Natural Language Processing
- Context- Aware Computing
- Computer Vision
- Deep Learning
- Querying Method
Application
- Robot-assisted Surgery
- Virtual Assistants
- Administrative Workflow Assistants
- Connected Machines
- Diagnosis
- Clinical Trials
- Fraud Detection
- Cyber Security
- Dosage Error Reduction
- Real-time Monitoring
- Precision Medicine
- Personal Health and Nursing Assistants
- Drug Development
- Discovery
- Diagnostic
- Clinical Decision Support
- Others
End User
- ACOs
- MCOS
- Patients
- Payers
- Pharmaceutical Companies
- Biotechnology Companies
- Healthcare Providers
- Others
Distribution Channel
- Hospitals
- Clinics
- Others
Artificial Intelligence in Healthcare Market Regional Analysis
The market is analysed and market size insights and trends are provided by country, offering, technology, application, end user, and distribution channel as referenced above.
The countries covered in the market report are U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E., South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.
북미는 강력한 의료 시설 네트워크와 첨단 기술에 대한 주요 산업 참여자들의 상당한 투자에 힘입어 의료 분야에서 인공지능 시장을 선도하고 있습니다. 이 지역에서 최소 침습적 시술을 많이 도입하고 광범위한 환불 옵션이 있어 이러한 우위를 더욱 뒷받침합니다. 또한 노령 인구 증가, 의료비 지출 증가, 특히 코로나19 팬데믹에 대응한 연구 활동 증가가 북미 시장 강점에 크게 기여하고 있습니다.
아시아 태평양 지역은 2024년부터 2031년까지 가장 높은 성장률을 경험할 것으로 예상되며, 이는 의료 발전에 대한 인식을 높이기 위한 정부 이니셔티브에 힘입은 것입니다. 또한, 의료 관광의 증가와 연구 활동의 증가는 이 지역이 의료 서비스를 개선하려는 의지를 강조합니다. 끊임없이 증가하는 노령 인구와 고품질 의료에 대한 수요 증가는 이 지역의 상당한 시장 잠재력에 더욱 기여합니다.
보고서의 국가 섹션은 또한 개별 시장 영향 요인과 국내 시장의 현재 및 미래 트렌드에 영향을 미치는 규제 변화를 제공합니다. 다운스트림 및 업스트림 가치 사슬 분석, 기술 트렌드 및 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드와의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세 및 무역 경로의 영향이 국가 데이터에 대한 예측 분석을 제공하는 동안 고려됩니다.
헬스케어 시장 점유율에서의 인공지능
시장 경쟁 구도는 경쟁자별 세부 정보를 제공합니다. 포함된 세부 정보는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 애플리케이션 우세입니다. 위에 제공된 데이터 포인트는 시장과 관련된 회사의 초점에만 관련이 있습니다.
의료 분야의 인공 지능 시장 리더는 다음과 같습니다.
- 엔비디아 코퍼레이션(미국)
- 인텔 코퍼레이션(미국)
- IBM(미국)
- 구글 유한회사(미국)
- 마이크로소프트(미국)
- 제너럴 비전 주식회사(미국)
- 존슨앤존슨 서비스 주식회사(미국)
- 지멘스 헬스키니어스 AG(독일)
- 메드트로닉(아일랜드)
- 클라우드메드엑스 헬스(미국)
- Agfa-Gevaert 그룹(벨기에)
- 온코라 메디컬(미국)
- 마이크론 테크놀로지 주식회사(미국)
- DeepMind Technologies Limited(영국)
- AI(미국)에 오신 것을 환영합니다
- Koninklijke Philips NV(네덜란드)
- 정밀 건강 AI(미국)
- 클라우드(미국)
헬스케어 시장에서 인공지능의 최신 동향
- 2023년 11월, Koninklijke Philips NV(네덜란드)는 노르웨이의 Vestre Viken Health Trust와 협력하여 방사선학 워크플로우를 개선하는 것을 목표로 하는 AI Manager 플랫폼을 구현했습니다. AI 기반 골절 애플리케이션은 진단 프로세스를 간소화하여 방사선과 의사가 더 복잡한 사례에 집중할 수 있도록 했습니다. 30개 병원을 포괄하고 약 380만 명의 사람들에게 혜택을 제공하는 이 이니셔티브는 유럽에서 Philips의 가장 큰 AI 배포를 나타내며 환자 치료를 크게 개선하고 진단 절차를 신속하게 진행합니다.
- 2023년 10월, Microsoft(미국)는 HLTH 2023 컨퍼런스에서 Microsoft Cloud를 포함한 최신 데이터 및 AI 솔루션을 공개했습니다. 이는 의료 기관이 환자와 임상의 모두에게 통찰력을 제공하고 경험을 개선할 수 있도록 지원하도록 설계되었습니다. Microsoft Fabric 내에서 새롭게 도입된 업계별 데이터 솔루션은 다양한 건강 데이터 소스의 통합을 간소화하는 통합 분석 플랫폼을 제공합니다. 이 혁신을 통해 귀중한 통찰력에 안전하게 액세스할 수 있어 의료 부문에서 의사 결정과 운영 효율성이 향상됩니다.
- 2020년 3월, care.ai는 텍사스 병원 협회(THA)와 협력하여 주 전역에서 자율 모니터링을 위한 인공지능 도입을 촉진했습니다. 이 협업은 첨단 AI 기술을 의료 시설에 통합하여 환자 치료를 개선하는 것을 목표로 합니다. 이 이니셔티브는 혁신적인 모니터링 솔루션을 통해 운영 효율성과 환자 결과를 개선하려는 의지를 강조합니다.
- 2020년 12월, Aidoc과 Imbio는 인공 지능 기술을 의료 영상 분석에 통합하기 위해 힘을 합쳤으며, 특히 폐색전증의 탐지 및 치료를 목표로 했습니다. 이 협업은 진단 정확도를 높이고 치료 프로토콜을 최적화하는 AI의 잠재력을 강조합니다. 또한 AI 기반 의료 솔루션에 중점을 둔 신생 기업이 점점 더 주목을 받고 있으며, 개인 투자자와 벤처 캐피털리스트로부터 상당한 투자를 확보하고 있어 혁신적인 의료 기술에 대한 관심이 커지고 있음을 보여줍니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.