Global Ai Agriculture Market
시장 규모 (USD 10억)
연평균 성장률 :
%

![]() |
2026 –2032 |
![]() |
USD 2.08 Billion |
![]() |
USD 10.49 Billion |
![]() |
|
![]() |
>농업 분야의 글로벌 인공 지능 시장, 제공 분야(하드웨어, 소프트웨어 및 서비스), 기술(머신 러닝(ML), 컴퓨터 비전, 자연어 처리(NLP), 로봇 및 자동화 등), 응용 분야(정밀 농업, 가축 모니터링, 기상 예보, 토양 관리, 작물 건강 모니터링, 공급망 최적화 등), 배포 모드(온프레미스 및 클라우드), 최종 사용자(농장, 농업 기술 회사, 농약 회사, 연구소 등) - 산업 동향 및 2031년까지의 예측.
농업 시장 분석 및 규모에 있어서의 인공지능
농업 분야의 글로벌 인공지능 시장은 몇 가지 주요 요인에 의해 상당한 성장을 이룰 것으로 예상됩니다. 주요 동인은 TEM 솔루션이 제공하는 상당한 비용 절감으로, 통신 지출을 최적화하려는 기업에 어필합니다. 휴대전화 및 기타 휴대용 기기의 채택이 증가함에 따라 효과적인 비용 관리 솔루션에 대한 수요가 더욱 커지고 있습니다. TEM은 중요한 비용 투명성을 제공하여 조직이 통신 지출을 더 잘 이해하고 제어할 수 있도록 합니다. 또한 IoT 및 클라우드 기반 애플리케이션의 증가로 인해 이러한 기술이 통신 비용 관리에 새로운 복잡성을 도입함에 따라 TEM 솔루션에 대한 수요가 증가했습니다. 그러나 시장은 제약에 직면해 있으며, 특히 다양한 지역에서 다양한 통신 규정 및 규정 준수 요구 사항을 준수해야 하는 과제로 인해 구현 및 관리가 복잡해집니다. 이러한 과제에도 불구하고 상당한 성장 기회가 있습니다. 통신 비용 관리를 위한 자동화 기술은 상당한 기회를 제공하며, 비용 효율성과 전문성을 제공할 수 있는 TEM 솔루션의 아웃소싱도 마찬가지입니다.
Data Bridge Market Research는 글로벌 농업 인공지능 시장이 2031년까지 85억 달러에 도달할 것으로 예상되며, 예측 기간 동안 CAGR은 22.4%가 될 것으로 분석했습니다. 글로벌 농업 인공지능 시장 보고서는 또한 가격 분석, 특허 분석 및 기술 발전을 포괄적으로 다룹니다.
보고서 메트릭 |
세부 |
예측 기간 |
2024년부터 2031년까지 |
기준 연도 |
2023 |
역사적 연도 |
2022 |
양적 단위 |
수익 (USD) 10억 |
다루는 세그먼트 |
제공(하드웨어, 소프트웨어 및 서비스), 기술(머신러닝(ML), 컴퓨터 비전 , 자연어 처리(NLP) , 로봇공학 및 자동화, 기타), 응용 프로그램( 정밀 농업 , 가축 모니터링 , 기상 예보, 토양 관리, 작물 건강 모니터링, 공급망 최적화, 기타), 배포 모드(온프레미스 및 클라우드), 최종 사용자(농장, 농업 기술 회사, 농약 회사, 연구소, 기타) |
적용 국가 |
미국, 캐나다 및 멕시코, 독일, 프랑스, 영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 기타 유럽, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 기타 아시아 태평양, 사우디 아라비아, UAE, 남아프리카, 이집트, 이스라엘, 기타 중동 및 아프리카, 브라질, 아르헨티나 및 기타 남미 |
시장 참여자 포함 |
Deere & Company, IBM, Microsoft, Google, OpenAI, Open Text Corporation, ClimateAi, AgEagle Aerial Systems Inc., CNH Industrial NV, AGCO Corporation, KUBOTA Corporation, YANMAR HOLDINGS CO., LTD., DeLaval, Lely, Raven Industries, Inc., Gamaya, Bayer AG, VALMONT INDUSTRIES, INC., Cisco Systems, Inc., Oracle, Harvest CROO Robotics LLC, ADM, SYNGENTA GLOBAL, Corteva, Bowery Farming Inc. 등이 있습니다. |
시장 정의
농업 분야의 글로벌 인공지능 시장은 AI를 활용하여 농업 관행을 개선하는 기술 과 솔루션을 포괄합니다. 여기에는 작물 관리, 정밀 농업 및 자원 할당을 최적화하는 머신 러닝, 컴퓨터 비전 및 로봇 공학이 포함됩니다. 이 시장은 농업 운영의 효율성, 수확량 및 지속 가능성을 높이기 위한 데이터 분석, 자율 기계 및 예측 분석을 위한 AI 기반 도구를 포함합니다. 작물 모니터링, 토양 관리, 해충 방제 및 공급망 최적화를 포함한 광범위한 응용 프로그램을 제공합니다.
농업 시장 역학의 글로벌 인공 지능
이 섹션에서는 시장 동인, 이점, 기회, 제약 및 과제를 이해하는 것을 다룹니다. 이 모든 내용은 아래에서 자세히 설명합니다.
운전자
- 작물 모니터링 및 수확량 예측 정확도 향상
농업 분야의 인공지능(AI)은 작물 모니터링과 수확량 예측 정확도를 향상시킵니다. AI는 머신 러닝 알고리즘과 데이터 분석을 활용하여 위성 이미지, 토양 센서, 날씨 예보와 같은 다양한 출처의 방대한 양의 데이터를 분석할 수 있습니다. 이를 통해 농부는 작물 건강을 모니터링하고, 해충 침입을 식별하고, 수확량을 보다 정확하게 예측할 수 있습니다. 결과적으로 AI 기반 통찰력은 자원 할당을 최적화하고, 의사 결정을 개선하고, 전반적인 농업 생산성을 높이는 데 도움이 됩니다.
예를 들어,
- Gramener가 게시한 블로그에 따르면 2021년 7월, 머신 러닝과 AI를 사용하여 작물 수확량을 예측하는 것이 점점 더 중요해졌습니다. 이 기사에서는 공간 분석과 IoT 기기가 작물 모니터링과 수확량 예측을 어떻게 향상시켰는지 논의했습니다. 위성 이미지와 기후 데이터를 활용한 AI와 머신 러닝 모델은 토양 상태와 기상 패턴을 평가하여 작물 수확량을 예측하는 데 있어 정확도를 높였습니다. 이러한 기술을 사용하면 원격 모니터링, 효율적인 자원 매핑, 예측 분석이 가능해져 농업 생산자가 더 나은 의사 결정과 계획을 수립할 수 있었습니다. 이러한 발전은 보다 효과적인 작물 관리를 지원합니다.
AI를 활용한 더 나은 농업 기술 구현 증가
AI를 통한 더 나은 농업 기술 의 구현을 늘리는 것은 물, 비료, 살충제와 같은 투입물의 사용을 최적화하는 것을 포함합니다. AI 기반 솔루션은 이러한 자원을 정확하게 관리하여 효율적으로 필요한 곳에만 적용되도록 합니다. 이를 통해 낭비를 최소화하고 작물 수확량을 극대화하여 비용을 절감하고 생산성을 향상시켜 궁극적으로 보다 지속 가능하고 수익성 있는 농업 관행으로 이어집니다.
예를 들어,
- 2024년 1월 Intellias에서 발행한 기사에 따르면 AI는 농업 기술을 향상시켜 농업에 상당한 영향을 미쳤습니다. AI는 물, 비료, 살충제를 정확하게 관리하여 비용을 절감하고 생산성을 높였습니다. 자동화된 시스템은 관개와 비료 적용을 최적화하여 작물 수확량과 자원 효율성을 높였습니다. 이러한 발전은 보다 지속 가능하고 수익성 있는 농업 관행을 지원하여 궁극적으로 수확량 개선과 비용 절감을 통해 농부에게 이익을 제공했습니다.
기회
- 통신비 관리를 위한 자동화 기술
Telecom Expense Management(TEM)를 위한 자동화 기술은 프로세스를 간소화하고, 정확성을 높이고, 비용을 절감합니다. 자동화된 도구와 소프트웨어를 활용하여 통신 사업자 및 기업은 송장을 효율적으로 관리하고, 비용을 추적하고, 실시간으로 사용 패턴을 분석합니다. 이 기술은 투명성과 통제력을 개선하고, 데이터 기반 통찰력을 기반으로 사전 예방적 의사 결정을 가능하게 합니다. 게다가 자동화는 인적 오류를 최소화하고, 규제 요구 사항을 준수하며, 리소스 할당을 최적화하여 TEM을 전략적 자산으로 전환합니다.
예를 들어,
- Brightfin에서 발행한 기사에 따르면, 2022년 7월 자동화된 통신 비용 관리 시스템으로 전환한 결과 여러 가지 이점이 있었습니다. 첫째, 통신 문제와 관련된 헬프데스크 티켓 수가 크게 줄어 IT 리소스가 확보되었습니다. 또한 이 자동화를 통해 송장 처리 및 비용 관리와 같은 일상적인 작업을 처리하여 직원들의 시간을 절약하고 더 중요한 프로젝트에 집중할 수 있었습니다. 나아가 자동화를 통해 인적 오류가 줄어들어 운영의 일관성과 효율성이 보장되었습니다. 마지막으로 이 시스템은 귀중한 데이터 통찰력을 제공하고 간소화된 통신 관리 프로세스를 통해 비용을 절감하는 데 도움이 되었습니다.
- PAG가 발행한 기사에 따르면 자동화는 통신 비용 관리를 혁신하고 있습니다. 사용량 모니터링 및 송장 조정과 같은 작업을 간소화했으며, 특히 병원과 의료 기관에 유익합니다. 자동화된 솔루션은 감사에 소요되는 시간과 노력을 줄여 장비 사용 및 통신 계약을 최적화하여 상당한 절감 효과를 파악합니다.
제지/도전
- 지속적인 데이터 개인 정보 보호 및 보안 문제
농업을 위한 AI의 유망한 발전에도 불구하고, 지속적인 데이터 프라이버시와 보안 문제가 이러한 이점을 가린다. AI 시스템이 작물 수확량, 토양 상태, 농장 운영을 포함한 방대한 양의 민감한 농업 데이터를 수집하고 분석함에 따라 농부들은 상당한 위험에 노출된다. 이 데이터에 대한 무단 액세스와 침해는 지적 재산권 손실, 민감한 정보 조작, 사이버 공격에 대한 취약성 증가를 포함한 심각한 결과를 초래할 수 있다. 이러한 보안 문제는 AI 기술에 대한 신뢰를 훼손하고 광범위한 채택을 방해한다.
예를 들어
- ShardSecure에서 게시한 블로그에 따르면, 2023년 8월 농업은 데이터 프라이버시와 보안 문제가 증가하는 상황에 직면했습니다. 2021년 JBS Foods에 대한 랜섬웨어 공격과 같은 사이버 공격은 이 부문의 취약성을 강조했습니다. 정밀 농업이 방대한 양의 데이터를 생성하고 IoT 기기가 증가함에 따라 위험이 증폭되었습니다. 새로 설립된 식품 및 농업 정보 공유 및 분석 센터는 이러한 문제를 해결하는 것을 목표로 했습니다. 그러나 많은 농업 기업은 여전히 데이터 보안, 규정 준수 및 AI 관련 위협으로부터 보호하는 데 어려움을 겪고 있습니다. 개선된 보안 조치는 민감한 데이터를 보호하고 비용이 많이 드는 중단 위험을 줄임으로써 회사에 도움이 될 수 있습니다.
코로나19 이후 농업 시장에서 글로벌 인공지능 에 미치는 영향
COVID-19 이후의 상황은 글로벌 시장에 상당한 영향을 미쳤습니다. 그러나 경제가 점차 회복되면서 인프라 개발에 대한 집중도가 높아지고 프로젝트가 다시 급증하고 있습니다. 이 산업은 프로세스를 간소화하기 위해 향상된 안전 프로토콜과 디지털 기술을 통해 새로운 규범에 적응하고 있습니다. 건설 프로젝트가 다시 추진력을 얻으면서 통신 서비스에 대한 수요가 회복되고 있으며, 시장 참여자에게 팬데믹 이후 시대에 국가의 인프라 성장에 기여할 수 있는 기회를 제공합니다.
최근 개발 사항
예를 들어,
- TeeJet Technologies는 2024년 6월에 FM9380-F75 전자기 유량계를 출시했습니다. 이 제품은 유지 보수가 필요 없는 혁신적인 무동작 부품 설계, 유체 조건에 따른 최적화된 성능, 광범위한 응용 프로그램 호환성을 특징으로 하며 정밀 농업 제품 포트폴리오에 도움이 되고 운영 효율성을 향상시킵니다.
- 2023년 11월, 쿠보타 코퍼레이션은 Agritechnica에서 자율 농업 기술의 중요한 발전을 알리는 Agri Robo KVT를 선보였습니다. 이 향상된 트랙터는 노동력 부족을 해결하고, 안전을 강화하고, 효율적인 농업을 촉진하여 쿠보타가 시장 경쟁력과 혁신 리더십을 강화하는 데 도움이 되었습니다.
농업 시장 범위의 글로벌 인공지능
농업 시장에서의 인공지능은 제공, 기술, 애플리케이션, 배포 모드 및 최종 사용자를 기준으로 하는 다섯 가지 주요 세그먼트로 세분화됩니다. 이러한 세그먼트 간의 성장은 산업의 빈약한 성장 세그먼트를 분석하고 사용자에게 핵심 시장 애플리케이션을 식별하기 위한 전략적 결정을 내리는 데 도움이 되는 귀중한 시장 개요와 시장 통찰력을 제공하는 데 도움이 됩니다.
이 연구 보고서는 글로벌 농업 인공지능 시장을 다음과 같은 세그먼트로 분류합니다.
헌금
- 하드웨어
- 소프트웨어
- 서비스
제공 항목을 기준으로 시장은 하드웨어, 소프트웨어, 서비스로 구분됩니다.
기술
- 머신러닝(ML)
- 컴퓨터 비전
- 자연어 처리(NLP)
- 로봇공학 및 자동화
- 기타
기술을 기준으로 시장은 머신 러닝(ML), 컴퓨터 비전, 자연어 처리(NLP), 로봇공학 및 자동화 및 기타로 구분됩니다.
애플리케이션
- 정밀 농업
- 가축 모니터링
- 날씨 예보
- 토양 관리
- 작물 건강 모니터링
- 공급망 최적화
- 기타
시장은 응용 분야별로 정밀 농업, 가축 모니터링, 기상 예보, 토양 관리, 작물 건강 모니터링, 공급망 최적화 및 기타 분야로 구분됩니다.
배포 모드
- 구름
- 온프레미스
배포 모드를 기준으로 시장은 클라우드와 온프레미스로 구분됩니다.
최종 사용자
- 전원
- 농업 기술 회사
- 농화학 회사
- 연구 기관
- 기타
최종 사용자를 기준으로 시장은 농장, 농업 기술 회사, 농약 회사, 연구소 및 기타로 구분됩니다.
농업 시장에서의 글로벌 인공지능
농업 분야의 글로벌 인공지능 시장은 제공, 기술, 애플리케이션, 배포 모드 및 최종 사용자를 기준으로 하는 5개의 주요 세그먼트로 구분됩니다. 농업 분야의 글로벌 사물 인터넷(IOT) 시장에서 다루는 국가는 미국, 북미의 캐나다 및 멕시코, 독일, 프랑스, 영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 나머지 지역, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양의 나머지 지역, 사우디 아라비아, UAE, 남아프리카, 이집트, 이스라엘, 중동 및 아프리카의 나머지 지역, 브라질, 아르헨티나 및 남미의 나머지 지역입니다.
북미에서는 미국이 하드웨어 구성 요소 공급업체의 수가 가장 많은 국가로 우세합니다. 또한 유럽에서는 영국이 전국적으로 기술 발전이 이루어져 우세합니다. 아시아 태평양에서는 중국이 이 지역에서 하드웨어 구성 요소의 가장 큰 제조업체를 보유하고 있어 우세합니다.
보고서의 국가 섹션은 또한 현재 및 미래 시장 추세에 영향을 미치는 개별 시장 영향 요인과 시장 규제의 변화를 제공합니다. 하류 및 상류 가치 사슬 분석, 기술 추세, 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 APAC 브랜드의 존재 및 가용성과 지역 및 국내 브랜드와의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세의 영향 및 무역 경로가 국가 데이터에 대한 예측 분석을 제공하는 동안 고려됩니다.
경쟁 환경 및 농업 시장 점유율 분석의 글로벌 인공지능
농업 시장에서의 글로벌 인공지능 경쟁 구도는 경쟁자에 대한 세부 정보를 제공합니다. 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, APAC 및 SEA 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 애플리케이션 우세 등이 포함됩니다. 위에 제공된 데이터 포인트는 농업 시장에서의 글로벌 인공지능과 관련된 회사의 초점에만 관련이 있습니다. 농업 시장에서의 글로벌 인공지능 시장에서 운영되는 주요 기업 중 일부는 다음과 같습니다. Open Text Corporation, OpenAI, VALMONT INDUSTRIES, INC., AGCO Corporation, IBM 등이 있습니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.