Image

유럽 ​​신약 발견 시장의 인공 지능(AI) – 업계 동향 및 2029년 예측

보건 의료

Image

유럽 ​​신약 발견 시장의 인공 지능(AI) – 업계 동향 및 2029년 예측

  • 보건 의료
  • 출판된 보고서
  • 2022년 8월
  • 유럽
  • 350 페이지
  • 테이블 수: 149
  • 숫자 수: 43

유럽의 신약 발견 시장의 인공 지능(AI), 애플리케이션별(신규 약물 후보, 약물 최적화 및 용도 변경 전임상 테스트 및 승인, 약물 모니터링, 새로운 질병 관련 표적 및 경로 찾기, 질병 메커니즘 이해, 정보 집계 및 합성, 형성 및 적격성) 가설, De Novo Drug Design, 기존 약물의 약물 타겟 찾기 등), 기술(머신러닝, 딥러닝, 자연어 처리 등), 약물 유형(소분자 및 고분자), 제공(소프트웨어 및 서비스) , 적응증(면역종양학, 신경퇴행성 질환, 심혈관 질환, 대사 질환 및 기타), 최종 용도(계약 연구 기관(CRO), 제약 및 생명 공학 회사, 연구 센터 및 학술 기관 및 기타) 산업 동향 및 2029년 예측.

Europe Artificial Intelligence (AI) in Drug Discovery Market

유럽 ​​신약 발견 시장 분석 및 통찰력의 인공 지능(AI)

인공지능(AI)은 헬스케어 산업에서 수익성 있는 기술이 될 것으로 예상된다. AI의 구현은 의약품 제조 과정에서 R&D 격차를 줄이고 표적 제조에 도움이 됩니다. 의약품. 따라서, 바이오의약품 기업들은 시장 점유율을 높이기 위해 AI로 눈을 돌리고 있습니다. 신약 발견을 위한 AI는 기계를 사용하여 인간 지능을 시뮬레이션하여 복잡한 문제를 해결하는 기술입니다. 의약품 개발 절차.

Europe Artificial Intelligence (AI) in Drug Discovery Market

Europe Artificial Intelligence (AI) in Drug Discovery Market

임상시험 과정에서 AI 솔루션을 채택하면 발생할 수 있는 장애물을 제거하고, 임상시험 주기 시간을 단축하며, 임상시험 과정의 생산성과 정확성을 높입니다. 신약 발견을 위한 AI의 기술 발전과 신약 발견 프로세스에 소요되는 총 시간 감소는 예측 기간 동안 시장 성장을 이끄는 또 다른 요인입니다. 그러나 낮은 품질과 일관되지 않은 사용 가능한 데이터는 시장 성장을 방해할 것입니다. 또한 기술 및 기술적 한계와 관련된 높은 비용으로 인해 시장 성장이 제한될 것입니다.

Data Bridge Market Research는 유럽의 신약 발견 시장 인공 지능(AI)이 예측 기간 동안 연평균 성장률(CAGR) 52.0%로 성장하여 2029년까지 48억 9,195만 달러에 이를 것으로 예상한다고 분석합니다. 소프트웨어는 신약 발견 시장에서 AI 사용을 상용화하기 위한 기술 발전의 급속한 발전으로 인해 시장에서 가장 큰 기술 부문을 차지합니다. 이 시장 보고서는 가격 분석, 특허 분석 및 기술 발전에 대한 심층적인 내용도 다루고 있습니다.

보고서 지표

세부

예측기간

2022년부터 2029년까지

기준 연도

2021

역사적인 연도

2020 (2019-2014에 맞게 사용자 정의 가능)

양적 단위

수익(백만 달러), 가격(달러)

해당 세그먼트

응용 분야별(신규 약물 후보, 약물 최적화 및 용도 변경 전임상 테스트 및 승인, 약물 모니터링, 새로운 질병 관련 표적 및 경로 찾기, 질병 메커니즘 이해, 정보 집계 및 합성, 가설 형성 및 적격성, De Novo 약물 설계, 약물 표적 찾기 구약물 등), 기술(머신러닝, 딥러닝, 자연어처리 등), 약물종류(소분자 및 고분자), 제공(소프트웨어 및 서비스), 적응증(면역종양학, 퇴행성뇌질환, 심혈관질환) 질병, 대사성 질환 및 기타), 최종 사용(수탁 연구 기관(CRO), 제약 및 생명 공학 회사, 연구 센터 및 학술 기관 및 기타)

해당 국가

독일, 프랑스, ​​영국, 이탈리아, 스페인, 러시아, 터키, 벨기에, 네덜란드, 스위스, 기타 유럽 지역

해당 시장 참여자

시장에서 활동하는 주요 업체로는 NVIDIA Corporation, IBM Corp., Atomwise Inc., Microsoft, Benevolent AI, Aria Pharmaceuticals, Inc., DEEP GENOMICS, Exscientia, Cloud, Insilico Medicine, Cyclica, NuMedii, Inc., Envisagenics 등이 있습니다. , Owkin Inc., BERG LLC, Schrödinger, Inc., XtalPi Inc. 및 BIOAGE Inc. 등

유럽 ​​신약 발견 시장 정의의 인공 지능(AI)

AI는 지난 몇 년 동안 의료 기술 실무자들의 관심과 마음을 사로잡았습니다. 여러 회사와 주요 연구소가 이러한 기술을 임상용으로 완벽하게 만들기 위해 노력했기 때문입니다. AI(딥 러닝(DL), 머신 러닝(ML) 또는 인공 신경망(ANN)이라고도 함)이 임상의에게 어떻게 도움이 될 수 있는지에 대한 최초의 상용화된 시연이 이제 가능합니다. 이러한 시스템은 임상의 워크플로우의 패러다임 전환으로 이어질 수 있으며, 생산성을 높이는 동시에 치료 및 환자 처리량을 향상시킬 수 있습니다. 신약 발견용 AI는 기계를 사용해 인간 지능을 시뮬레이션해 신약 개발 절차의 복잡한 문제를 해결하는 기술이다. 임상시험 과정에서 AI 솔루션을 채택하면 발생할 수 있는 장애물을 제거하고, 임상시험 주기 시간을 단축하며, 임상시험 과정의 생산성과 정확성을 높입니다. 따라서 신약 발견 프로세스에서 이러한 고급 AI 솔루션을 채택하는 것이 생명과학 산업 이해관계자들 사이에서 인기를 얻고 있습니다. 제약 분야에서는 신규 화합물 발굴, 치료 표적 식별, 맞춤형 의약품 개발에 도움을 줍니다. 신약 발견에 사용되는 AI 플랫폼은 다양한 만성 질환의 중증도를 치료하고 최소화하기 위한 약물 발견에 대한 통찰력을 도출하는 데 실현 가능한 옵션임이 입증될 수 있습니다.

신약 발견 시장 역학의 유럽 인공 지능(AI)

이 섹션에서는 시장 동인, 장점, 기회, 제한 사항 및 과제를 이해하는 방법을 다룹니다. 이 모든 내용은 아래에서 자세히 설명됩니다.    

드라이버

  • 만성 질환 발병률 증가로 신약 개발에 AI 필요성이 높아졌습니다.

만성질환의 발병률은 전 세계적으로 빠른 속도로 증가하고 있습니다. 질병 통제 예방 센터(CDC)에 따르면 미국 성인 10명 중 6명이 만성 질환을 앓고 있습니다. 또한 CDC는 심장병, 당뇨병과 같은 만성 질환이 미국의 주요 사망 원인임을 강조합니다. 이러한 통계는 만성 질환의 유병률이 증가하고 이러한 질병으로 인한 사망률을 낮춰야 할 필요성을 강조합니다.

신약 발견에 사용되는 AI 플랫폼은 다양한 만성 질환의 중증도를 치료하고 최소화하기 위한 약물 발견에 대한 통찰력을 도출하는 데 실현 가능한 옵션임이 입증될 수 있습니다. 따라서 이러한 요소는 예측 기간 동안 시장 성장의 원동력으로 작용할 것으로 예상됩니다.

  • 전략적 협업, 파트너십, 제품 출시

AI는 R&D 일정을 빠르게 가속화하고, 약물 개발을 보다 저렴하고 빠르게 하며, 승인 확률을 향상시켜 약물 발견을 변화시킬 수 있는 잠재력을 가지고 있습니다. AI는 또한 약물 용도 변경 연구의 효율성을 높일 수 있습니다.

산업 간 제휴 및 협력의 증가가 시장을 주도합니다. 신약 발견 및 개발에서 AI의 관련성이 높아지고, 약물 연구 분야의 AI 기술을 포함한 R&D 활동에 대한 자금이 급증하면서 글로벌 시장 성장이 촉진될 것으로 예상됩니다. 따라서 산업 간 협력 및 파트너십의 증가가 시장을 주도하고 있습니다.

제지

  • 기술 및 기술적 한계와 관련된 높은 비용

현재 의료 부문은 약물 및 치료법의 비용 증가 등 몇 가지 복잡한 문제에 직면해 있으며 사회는 이 분야에서 구체적이고 중요한 변화를 필요로 합니다. AI의 전체 성공은 상당한 양의 데이터 가용성에 달려 있습니다. 왜냐하면 이러한 데이터는 시스템에 제공되는 후속 교육에 사용되기 때문입니다. 다양한 데이터베이스 제공업체의 데이터에 액세스하면 회사에 추가 비용이 발생할 수 있습니다. 임상 시험은 특정 질병 상태에 대해 인간을 대상으로 한 의약품의 안전성과 효능을 확립하는 데 중점을 두고 있으며 상당한 재정적 투자와 함께 6~7년이 소요됩니다. 그러나 이러한 실험에 참여하는 분자 10개 중 단 1개만이 성공적인 제거를 얻습니다. 이는 업계에 막대한 손실입니다. 이러한 실패는 부적절한 환자 선택, 기술 요구 사항 부족, 열악한 인프라로 인해 발생할 수 있습니다. 따라서 기술에 따른 비용 증가는 시장 성장을 방해하는 요인으로 작용하고 있습니다.

기회

  • R&D 투자 증가

R&D 활동의 증가와 클라우드 기반 서비스 및 애플리케이션의 채택 증가는 시장 성장에 유익한 기회를 제공할 것입니다.

바이오제약 분야의 AI 산업은 오랜 기간의 패혈증 이후 계속해서 성장하고 있습니다. 이는 2021년부터 예년까지 지속적인 투자 흐름과 제약회사와 AI 기업 간 협업 건수가 증가한 것으로 반영된다. 바이오제약 산업의 성장은 AI 관련 투자에 선도적인 제약회사의 적극적인 참여에 크게 영향을 받습니다. 바이오제약 분야의 AI 분야 과학 출판물 수와 제약회사와 AI 전문 공급업체 간의 연구 협력이 급속히 증가하고 있지만, 일부 제약회사는 여전히 AI 애플리케이션에 비판적입니다. 제약 및 의료 산업의 ML 및 AI 애플리케이션은 의료 분야에서 데이터 기반 약물 발견의 새로운 학제간 분야를 형성합니다. 따라서 R&D 활동에 대한 투자 증가는 시장 성장의 기회로 작용하고 있습니다.

도전

  • 숙련된 전문가 부족

숙련된 전문가의 부족은 시장 성장을 방해할 것으로 예상됩니다. 직원들은 약물에 대해 원하는 결과를 얻기 위해 복잡한 AI 기계에서 효율적으로 작업하기 위해 새로운 기술 세트를 재교육하거나 배워야 합니다. 제약산업에서 본격적인 AI 도입을 가로막는 이러한 과제에는 AI 기반 플랫폼을 운영할 숙련된 인력 부족, 소규모 조직의 제한된 예산, 일자리 상실로 이어지는 인력 교체에 대한 우려, AI가 생성하는 데이터에 대한 회의, 그리고 블랙박스 현상(즉, AI 플랫폼이 어떻게 결론에 도달하는지)입니다. 기술 부족은 AI를 통한 신약 발견에 큰 장애물로 작용하여 기업이 신약 발견을 위해 AI 기반 기계를 채택하는 것을 방해합니다.

기술 수요가 너무 높기 때문에 특정 기술을 갖춘 전문가를 유지하고 관리하는 것이 어려운 일로 나타났습니다. 더욱이, 기술 발전은 숙련된 전문가에 대한 수요 증가로 이어지는 또 다른 측면입니다. AI 기반 기술에 대한 전문인력 교육이 시급하다. 훈련되고 경험이 풍부한 전문가의 부족과 지속적인 기술 격차로 인해 취업 전망과 양질의 일자리에 대한 접근성이 제한됩니다. 따라서 적절한 기술을 갖춘 전문가의 가용성이 시장 성장에 도전하고 있음이 분명합니다.

코로나19 이후 유럽의 신약 발견 시장 인공지능(AI)이 미치는 영향

코로나19 발병은 코로나19 치료에 사용되는 기존 의약품의 식별 및 스크리닝을 위해 다양한 조직에서 AI를 널리 사용함으로써 신약 발견 산업에서 AI의 확장에 유익한 영향을 미쳤습니다. AI는 SARS-CoV, HIV, SARS-CoV-2, 인플루엔자 바이러스 등을 예방하기 위해 활성 화학물질을 탐지하는 데 유용합니다. 팬데믹 기간 동안 전 세계 경제는 전통적인 백신 탐지 프로세스가 아닌 AI 기반 약물 발견에 의존했습니다. 이 프로세스는 만드는 데 수년이 걸리고 비용도 동일하여 시장 성장에 기여했습니다.

제조업체는 코로나19 이후 회복을 위해 다양한 전략적 결정을 내리고 있습니다. 플레이어들은 무선 마이크와 관련된 기술을 개선하기 위해 다양한 R&D 활동을 수행하고 있습니다. 이를 통해 양사는 정확하고 발전된 AI 소프트웨어를 시장에 선보일 예정이다.

최근 개발

  • 2022년 3월 NVIDIA Corporation은 실시간 AI 애플리케이션을 개발하고 배포하기 위해 Clara Holoscan MGX를 출시했습니다. Clara Holoscan MGX는 Clara Holoscan 플랫폼을 확장하여 올인원 의료 등급 참조 아키텍처와 장기적인 소프트웨어 지원을 제공하여 의료 기기 산업의 혁신을 가속화합니다. 이는 회사가 수술, 진단 및 약물 발견을 위한 건강 부문에서 더 나은 AI 성능을 발휘하는 데 도움이 될 것입니다.
  • 2022년 5월, 선도적인 임상 단계 AI 지원 약물 발견 회사인 Benevolent AI는 AstraZeneca가 자사의 약물 개발 포트폴리오를 위해 특발성 폐섬유화증(IPF)에 대한 추가 신규 표적을 선택하여 Benevolent AI에 획기적인 지불금을 지급했다고 발표했습니다. 이는 IPF와 만성 신장 질환이라는 두 가지 질병 영역에서 Benevolent Platform을 사용하여 확인된 후 AstraZeneca의 포트폴리오 항목으로 검증 및 선택된 협업의 세 번째 새로운 표적입니다. 이는 2022년 1월에 체결된 두 가지 새로운 질병 분야인 전신홍반루푸스와 심부전을 포함하도록 최근 AstraZeneca와의 협력을 확장한 것을 기반으로 합니다. 이는 회사가 협력을 더욱 강화하는 데 도움이 되었습니다.

신약 발견 시장 범위의 유럽 인공 지능(AI)

신약 발견 시장의 유럽 인공 지능(AI)은 응용 프로그램, 기술, 약물 유형, 제공, 적응증 및 최종 용도로 분류됩니다. 세그먼트 간의 성장은 성장의 틈새 영역과 시장에 접근하기 위한 전략을 분석하고 핵심 응용 분야와 목표 시장의 차이점을 결정하는 데 도움이 됩니다.

애플리케이션

  • 새로운 약물 후보
  • 약물 최적화 및 용도 변경 전임상 테스트 및 승인
  • 약물 모니터링
  • 새로운 질병 관련 표적 및 경로 찾기
  • 질병 메커니즘 이해
  • 정보 수집 및 합성
  • 가설의 형성 및 검증
  • 드 노보 약물 디자인
  • 오래된 약물의 약물 표적 찾기
  • 기타

응용 분야를 기반으로 시장은 새로운 약물 후보, 약물 최적화 및 전임상 테스트 및 승인 용도 변경, 약물 모니터링, 새로운 질병 관련 표적 및 경로 찾기, 질병 메커니즘 이해, 정보 집계 및 합성, 가설 형성 및 검증, 신규로 분류됩니다. 약물 설계, 오래된 약물의 약물 표적 찾기 등.

기술

  • 기계 학습(ML)
  • 딥러닝(DL)
  • 자연어 처리(NLP)
  • 기타

기술을 기반으로 시장은 기계 학습(ML), 딥 러닝(DL), 자연어 처리(NLP) 등으로 분류됩니다.

약물 유형

  • 소분자
  • 큰 분자

약물 유형에 따라 시장은 소분자 및 거대 분자로 분류됩니다.

헌금

  • 소프트웨어
  • 서비스

제공을 기반으로 시장은 소프트웨어와 서비스로 분류됩니다.

표시

  • 면역종양학
  • 신경퇴행성 질환
  • 심혈관 질환
  • 대사질환
  • 기타

적응증에 따라 시장은 면역종양학, 신경퇴행성 질환, 심혈관 질환, 대사 질환 등으로 분류됩니다.

최종 사용

  • 제약 및 생명공학 회사
  • 계약 연구 기관(CRO)
  • 연구센터 및 학술기관
  • 기타

Artificial Intelligence (AI) in Drug Discovery Market

최종 용도를 기준으로 시장은 제약 및 생명 공학 회사, CRO(수탁 연구 기관), 연구 센터 및 학술 기관 등으로 분류됩니다.

유럽 ​​신약 발견 시장의 인공 지능(AI) 지역 분석/통찰

신약 발견 시장의 유럽 인공 지능(AI)이 분석되고 응용 프로그램, 기술, 약물 유형, 제공, 적응증 및 최종 용도별로 시장 규모 정보가 제공됩니다.

이 시장 보고서에서 다루는 국가는 독일, 프랑스, ​​영국, 이탈리아, 스페인, 러시아, 터키, 벨기에, 네덜란드, 스위스, 기타 유럽 지역입니다.

2022년에는 정부 자금의 증가와 상승세로 인해 유럽이 지배하게 될 것입니다.보건 의료소송 비용. 영국은 신약 발견을 위한 AI의 R&D 활동 증가와 기술 발전으로 인해 성장할 것으로 예상됩니다.

보고서의 국가 섹션에서는 또한 시장의 현재 및 미래 추세에 영향을 미치는 개별 시장 영향 요인 및 국내 시장 규제 변화를 제공합니다. 신규 판매, 교체 판매, 국가 인구통계, 규제법 및 수출입 관세와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 주요 포인터 중 일부입니다. 또한 유럽 브랜드의 존재와 가용성, 현지 및 국내 브랜드와의 경쟁이 크거나 부족하여 직면한 과제, 판매 채널의 영향을 고려하는 동시에 국가 데이터에 대한 예측 분석을 제공합니다.

경쟁 환경 및 유럽 신약 발견 시장 점유율 분석의 인공 지능(AI)

신약 발견 시장 경쟁 환경의 유럽 인공 지능(AI)은 경쟁사별 세부 정보를 제공합니다. 포함된 세부 정보에는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발에 대한 투자, 새로운 시장 이니셔티브, 생산 현장 및 시설, 회사의 강점과 약점, 제품 출시, 제품 시험 파이프라인, 제품 승인, 특허, 제품 폭 및 호흡, 애플리케이션 지배력, 기술 생명선 곡선. 제공된 위 데이터 포인트는 신약 발견 시장에서 유럽 인공 지능(AI)에 대한 회사의 초점과만 관련이 있습니다.

시장에서 활동하는 주요 업체로는 NVIDIA Corporation, IBM Corp., Atomwise Inc., Microsoft, Benevolent AI, Aria Pharmaceuticals, Inc., DEEP GENOMICS, Exscientia, Cloud, Insilico Medicine, Cyclica, NuMedii, Inc., Envisagenics 등이 있습니다. , Owkin Inc., BERG LLC, Schrödinger, Inc., XtalPi Inc. 및 BIOAGE Inc. 등이 있습니다.


SKU-

표 1 2020-2029년 유럽 약물 발견 시장의 인공 지능(AI) 제공 기준(백만 달러)

표 2 2020-2029년 지역별 약물 발견 시장의 인공 지능(AI)에 사용된 유럽 소프트웨어(백만 달러)

표 3 2020-2029년 유형별 약물 발견 시장의 인공 지능(AI)에 사용된 유럽 소프트웨어(백만 달러)

표 4 2020-2029년 지역별 약물 발견 시장의 인공 지능(AI) 분야 유럽 서비스(백만 달러)

표 5 기술별 유럽 약물 발견 시장의 인공 지능(AI)(2020-2029년)(백만 달러)

표 6 2020-2029년 지역별 약물 발견 시장의 인공 지능(AI)에 대한 유럽 기계 학습(ML)(백만 달러)

표 7 기술별 약물 발견 시장의 인공 지능(AI)에 대한 유럽 기계 학습(ML), 2020-2029년(백만 달러)

표 8 2020-2029년 유럽 지역별 약물 발견 시장의 인공 지능(AI) 딥 러닝(백만 달러)

표 9 2020-2029년 지역별 약물 발견 시장의 인공지능(AI)에서 유럽 자연어 처리(NLP)(백만 달러)

표 10 2020-2029년 지역별 약물 발견 시장의 인공 지능(AI) 분야 유럽 기타 국가(백만 달러)

표 11 유럽의 약물 발견 시장의 인공 지능(AI), 약물 유형별, 2020-2029년(백만 달러)

표 12 2020-2029년 지역별 약물 발견 시장의 인공 지능(AI)에 포함된 유럽 소분자(백만 달러)

표 13 2020-2029년 유럽 지역별 약물 발견 시장의 인공지능(AI) 거대 분자(백만 달러)

표 14 애플리케이션별 유럽 의약품 발견 시장의 인공 지능(AI)(2020-2029년)(백만 달러)

표 15 2020-2029년 지역별 약물 발견 시장의 인공 지능(AI) 분야 유럽 소설 약물 후보(백만 달러)

표 16 2020-2029년 애플리케이션별 약물 발견 시장의 인공 지능(AI) 분야 유럽 소설 약물 후보(백만 달러)

표 17 유럽의 약물 최적화 및 용도 변경 약물 발견 시장의 인공지능(AI)에 대한 전임상 테스트 및 승인, 지역별, 2020-2029년(백만 달러)

표 18 2020-2029년 지역별 약물 발견 시장의 인공 지능(AI)을 통한 유럽 약물 모니터링(백만 달러)

표 19 2020-2029년 유럽 지역별 약물 발견 시장의 인공 지능(AI) 정보 집계 및 합성(백만 달러)

표 20 2020-2029년 지역별 약물 발견 시장의 인공 지능(AI)을 활용한 유럽 드 노보 약물 디자인(백만 달러)

표 21 유럽의 경우 2020-2029년 지역별 약물 발견 시장의 인공지능(AI)을 통해 오래된 약물의 약물 표적을 찾는다(백만 달러)

표 22 2020-2029년 지역별 유럽 의약품 발견 시장의 인공 지능(AI)에 대한 가설의 형성 및 검증(백만 달러)

표 23 2020-2029년 지역별 의약품 발견 시장의 인공 지능(AI)에 대한 유럽의 이해 질병 메커니즘(백만 달러)

표 24 2020-2029년 지역별 약물 발견 시장에서 인공 지능(AI)의 새로운 질병 관련 표적과 경로를 찾는 유럽(백만 달러)

표 25 2020-2029년 지역별 약물 발견 시장의 인공 지능(AI) 분야 유럽 기타 국가(백만 달러)

표 26 유럽 의약품 발견 시장의 인공 지능(AI)(기준별, 2020-2029년)(백만 달러)

표 27 2020-2029년 지역별 약물 발견 시장의 인공지능(AI) 분야 유럽 면역종양학(백만 달러)

표 28 2020-2029년 적응증별 약물 발견 시장의 인공지능(AI) 분야 유럽 면역종양학(백만 달러)

표 29 2020-2029년 유럽 지역별 약물 발견 시장의 인공지능(AI) 관련 신경퇴행성 질환(백만 달러)

표 30 2020-2029년 유럽 지역별 약물 발견 시장의 인공 지능(AI)에 따른 심장혈관 질환(백만 달러)

표 31 2020-2029년 유럽 지역별 약물 발견 시장의 인공지능(AI) 관련 대사 질환(백만 달러)

표 32 2020-2029년 지역별 약물 발견 시장의 인공 지능(AI) 분야 유럽 기타 국가(백만 달러)

표 33 최종 용도별 의약품 발견 시장의 전 세계 유럽 인공 지능(AI)(2020-2029년)(백만 달러)

표 34 2020-2029년 지역별 약물 발견 시장의 인공 지능(AI) 분야 유럽 계약 연구 조직(백만 달러)

표 35 2020-2029년 지역별 의약품 발견 시장의 인공지능(AI) 부문 유럽 제약 및 생명공학 기업(백만 달러)

표 36 2020-2029년 지역별 약물 발견 시장의 인공 지능(AI) 분야 유럽 연구 센터 및 학술 기관(백만 달러)

표 37 2020-2029년 지역별 약물 발견 시장의 인공지능(AI) 분야 유럽 기타 국가(백만 달러)

표 38 유럽 의약품 발견 시장의 국가별 인공지능(AI), 2020-2029년(백만 달러)

표 39 2020-2029년 유럽 의약품 발견 시장의 인공지능(AI) 제공량(백만 달러)

표 40 2020-2029년 유형별 약물 발견 시장의 인공 지능(AI)에 사용된 유럽 소프트웨어(백만 달러)

표 41 2020-2029년 기술별 유럽 의약품 발견 시장의 인공 지능(AI)(백만 달러)

표 42 2020-2029년 기술별 약물 발견 시장의 인공 지능(AI)에 대한 유럽 기계 학습(ML)(백만 달러)

표 43 유럽의 약물 발견 시장의 인공 지능(AI), 약물 유형별, 2020-2029년(백만 달러)

표 44 애플리케이션별 유럽 의약품 발견 시장의 인공 지능(AI)(2020-2029년)(백만 달러)

표 45 2020-2029년 애플리케이션별 약물 발견 시장의 인공 지능(AI) 분야 유럽 소설 약물 후보(백만 달러)

표 46 2020-2029년 유럽 의약품 발견 시장의 인공 지능(AI)(기준별)(백만 달러)

표 47 2020-2029년 적응증별 약물 발견 시장의 인공지능(AI) 분야 유럽 면역종양학(백만 달러)

표 48 최종 용도별 유럽 의약품 발견 시장의 인공 지능(AI)(2020-2029년)(백만 달러)

표 49 2020-2029년 영국 약물 발견 시장의 인공 지능(AI) 제공 기준(백만 달러)

표 50 2020-2029년 유형별 약물 발견 시장의 인공 지능(AI) 분야 영국 소프트웨어(백만 달러)

표 51 영국 약물 발견 시장의 인공 지능(AI), 기술별, 2020-2029년(백만 달러)

표 52 2020-2029년 기술별 약물 발견 시장의 인공 지능(AI)에 대한 영국 기계 학습(ML)(백만 달러)

표 53 영국의 약물 발견 시장의 인공 지능(AI), 약물 유형별, 2020-2029년(백만 달러)

표 54 애플리케이션별 영국 약물 발견 시장의 인공 지능(AI), 2020-2029년(백만 달러)

표 55 응용 분야별 약물 발견 시장의 인공지능(AI) 분야 영국의 새로운 약물 후보(2020-2029년)(백만 달러)

표 56 영국 약물 발견 시장의 인공 지능(AI)(표시별, 2020-2029년)(백만 달러)

표 57 2020-2029년 영국 약물 발견 시장의 인공지능(AI) 면역종양학(표시별)(백만 달러)

표 58 영국 약물 발견 시장의 인공 지능(AI) 최종 용도별(2020-2029년)(백만 달러)

표 59 2020-2029년 프랑스 약물 발견 시장의 인공 지능(AI) 제공 기준(백만 달러)

표 60 2020-2029년 유형별 약물 발견 시장의 인공 지능(AI) 분야 프랑스 소프트웨어(백만 달러)

표 61 2020-2029년 기술별 프랑스 약물 발견 시장의 인공 지능(AI)(백만 달러)

표 62 2020-2029년 기술별 약물 발견 시장의 인공 지능(AI)에 대한 프랑스 기계 학습(ML)(백만 달러)

표 63 2020-2029년 약물 유형별 프랑스 약물 발견 시장의 인공 지능(AI)(백만 달러)

표 64 애플리케이션별 프랑스 약물 발견 시장의 인공 지능(AI)(2020-2029년)(백만 달러)

표 65 애플리케이션별, 2020-2029년 약물 발견 시장의 인공 지능(AI) 분야 프랑스 소설 약물 후보(백만 달러)

표 66 2020-2029년 프랑스 약물 발견 시장의 인공 지능(AI)(표시별)(백만 달러)

표 67 2020-2029년 약물 발견 시장의 인공지능(AI) 분야 프랑스 면역종양학(표시별)(백만 달러)

표 68 최종 용도별 프랑스 의약품 발견 시장의 인공 지능(AI)(2020-2029년)(백만 달러)

표 69 2020-2029년 독일 약물 발견 시장의 인공 지능(AI) 제공량(백만 달러)

표 70 2020-2029년 유형별 약물 발견 시장의 독일 인공 지능(AI) 소프트웨어(백만 달러)

표 71 독일 약물 발견 시장의 인공 지능(AI), 기술별, 2020-2029년(백만 달러)

표 72 2020-2029년 기술별 약물 발견 시장의 인공 지능(AI)에 대한 독일 기계 학습(ML)(백만 달러)

표 73 독일 약물 발견 시장의 약물 유형별 인공 지능(AI), 2020-2029년(백만 달러)

표 74 애플리케이션별 독일 약물 발견 시장의 인공 지능(AI)(2020-2029년)(백만 달러)

표 75 애플리케이션별, 2020-2029년 독일 약물 발견 시장의 인공 지능(AI) 분야 소설 약물 후보(백만 달러)

표 76 독일 약물 발견 시장의 인공 지능(AI)(표시별, 2020-2029년)(백만 달러)

표 77 2020-2029년 적응증별 약물 발견 시장의 인공지능(AI) 분야 독일 면역종양학(백만 달러)

표 78 최종 용도별 독일 약물 발견 시장의 인공 지능(AI)(2020-2029년)(백만 달러)

표 79 2020-2029년 스페인 약물 발견 시장의 인공 지능(AI) 제공 기준(백만 달러)

표 80 2020-2029년 유형별 약물 발견 시장의 인공 지능(AI)에 사용된 스페인 소프트웨어(백만 달러)

표 81 스페인 약물 발견 시장의 인공 지능(AI), 기술별, 2020-2029년(백만 달러)

표 82 2020-2029년 기술별 스페인 약물 발견 시장의 인공 지능(AI)에서의 기계 학습(ML)(백만 달러)

표 83 스페인 약물 발견 시장의 약물 유형별 인공 지능(AI), 2020-2029년(백만 달러)

표 84 애플리케이션별 스페인 약물 발견 시장의 인공 지능(AI), 2020-2029년(백만 달러)

표 85 응용 분야별 약물 발견 시장의 인공 지능(AI) 분야 스페인 소설 약물 후보(2020-2029년)(백만 달러)

표 86 스페인 약물 발견 시장의 인공 지능(AI)(표시별, 2020-2029년)(백만 달러)

표 87 2020-2029년 적응증별 약물 발견 시장의 인공지능(AI) 분야 스페인 면역종양학(백만 달러)

표 88 최종 용도별 스페인 약물 발견 시장의 인공 지능(AI)(2020-2029년)(백만 달러)

표 89 2020-2029년 이탈리아 약물 발견 시장의 인공지능(AI) 제공량(백만 달러)

표 90 2020-2029년 유형별 약물 발견 시장의 이탈리아 인공 지능(AI) 소프트웨어(백만 달러)

표 91 2020-2029년 기술별 이탈리아 약물 발견 시장의 인공 지능(AI)(백만 달러)

표 92 2020-2029년 기술별 이탈리아 약물 발견 시장의 인공 지능(AI)에 대한 기계 학습(ML)(백만 달러)

표 93 2020-2029년 이탈리아 약물 발견 시장의 약물 유형별 인공 지능(AI)(백만 달러)

표 94 애플리케이션별 이탈리아 약물 발견 시장의 인공 지능(AI)(2020-2029년)(백만 달러)

표 95 이탈리아 약물 발견 시장의 인공지능(AI) 분야 신규 약물 후보, 애플리케이션별, 2020-2029(백만 달러)

표 96 2020-2029년 이탈리아 약물 발견 시장의 인공 지능(AI)(표시별)(백만 달러)

표 97 이탈리아 약물 발견 시장의 인공지능(AI) 면역종양학(표시별, 2020-2029년)(백만 달러)

표 98 2020-2029년 최종 용도별 이탈리아 의약품 발견 시장의 인공 지능(AI) (미화 백만 달러)

표 99 2020-2029년 러시아 신약 발견 시장의 인공지능(AI) 제공량(백만 달러)

표 100 2020-2029년 유형별 약물 발견 시장의 인공 지능(AI) 분야 러시아 소프트웨어(백만 달러)

표 101 2020-2029년 기술별 러시아 약물 발견 시장의 인공 지능(AI)(백만 달러)

표 102 2020-2029년 기술별 약물 발견 시장의 인공 지능(AI)에 대한 러시아 기계 학습(ML)(백만 달러)

표 103 2020-2029년 약물 유형별 러시아 약물 발견 시장의 인공 지능(AI)(백만 달러)

표 104 애플리케이션별 러시아 약물 발견 시장의 인공 지능(AI)(2020-2029년)(백만 달러)

표 105 애플리케이션별, 2020-2029년 약물 발견 시장의 인공지능(AI) 분야 러시아 소설 약물 후보(백만 달러)

표 106 2020-2029년 러시아 약물 발견 시장의 인공 지능(AI)(표시별)(백만 달러)

표 107 2020-2029년 적응증별 약물 발견 시장의 인공지능(AI) 분야 러시아 면역종양학(백만 달러)

표 108 2020-2029년 최종 용도별 러시아 의약품 발견 시장의 인공 지능(AI) (미화 백만 달러)

표 109 2020-2029년 네덜란드 약물 발견 시장의 인공 지능(AI) 제공 형태(백만 달러)

표 110 2020-2029년 유형별 네덜란드 약물 발견 시장의 인공 지능(AI) 소프트웨어(백만 달러)

표 111 네덜란드 약물 발견 시장의 인공 지능(AI), 기술별, 2020-2029년(백만 달러)

표 112 2020-2029년 기술별 약물 발견 시장의 인공 지능(AI)에 대한 네덜란드 기계 학습(ML)(백만 달러)

표 113 2020-2029년 네덜란드 약물 발견 시장의 약물 유형별 인공 지능(AI)(백만 달러)

표 114 네덜란드 약물 발견 시장의 인공 지능(AI)(응용 분야별, 2020-2029년)(백만 달러)

표 115 네덜란드 약물 발견 시장의 인공지능(AI) 분야 신규 약물 후보(응용 분야별, 2020-2029년)(백만 달러)

표 116 2020-2029년 네덜란드 약물 발견 시장의 인공 지능(AI)(표시별)(백만 달러)

표 117 2020-2029년 네덜란드 약물 발견 시장의 인공지능(AI) 분야 면역종양학(표시별)(백만 달러)

표 118 2020-2029년 최종 용도별 네덜란드 의약품 발견 시장의 인공 지능(AI) (미화 백만 달러)

표 119 2020-2029년 스위스 약물 발견 시장의 인공 지능(AI) 제공 기준(백만 달러)

표 120 2020-2029년 유형별 스위스 약물 발견 시장의 인공 지능(AI) 소프트웨어(백만 달러)

표 121 2020-2029년 기술별 스위스 약물 발견 시장의 인공 지능(AI)(백만 달러)

표 122 2020-2029년 기술별 약물 발견 시장의 인공 지능(AI)에 대한 스위스 기계 학습(ML) (미화 백만 달러)

표 123 2020-2029년 스위스 약물 발견 시장의 약물 유형별 인공 지능(AI)(백만 달러)

표 124 애플리케이션별 스위스 약물 발견 시장의 인공 지능(AI)(2020-2029년)(백만 달러)

표 125 애플리케이션별 스위스 약물 발견 시장의 인공 지능(AI) 분야 신규 약물 후보, 2020-2029년(백만 달러)

표 126 2020-2029년 스위스 약물 발견 시장의 인공 지능(AI)(표시별)(미화 백만 달러)

표 127 2020-2029년 스위스 약물 발견 시장의 인공 지능(AI) 분야 면역종양학(표시별)(백만 달러)

표 128 최종 용도별 스위스 의약품 발견 시장의 인공지능(AI)(2020-2029년)(백만 달러)

표 129 2020-2029년 터키 의약품 발견 시장의 인공지능(AI) 제공량(백만 달러)

표 130 2020-2029년 유형별 약물 발견 시장의 인공 지능(AI) 분야 터키 소프트웨어(백만 달러)

표 131 2020-2029년 기술별 의약품 발견 시장의 터키 인공 지능(AI)(백만 달러)

표 132 2020-2029년 기술별 약물 발견 시장의 인공 지능(AI)에 대한 터키 기계 학습(ML)(백만 달러)

표 133 2020-2029년 약물 유형별 약물 발견 시장의 터키 인공 지능(AI)(미화 백만 달러)

표 134 애플리케이션별 의약품 발견 시장의 터키 인공 지능(AI)(2020-2029년)(백만 달러)

표 135 애플리케이션별 약물 발견 시장의 인공 지능(AI) 분야 터키 소설 약물 후보(2020-2029년)(백만 달러)

표 136 2020-2029년 약물 발견 시장의 터키 인공 지능(AI)(표시별)(미화 백만 달러)

표 137 2020-2029년 적응증별 약물 발견 시장의 인공 지능(AI)에 사용된 터키 면역종양학(백만 달러)

표 138 최종 용도별 의약품 발견 시장의 터키 인공 지능(AI)(2020-2029년)(백만 달러)

표 139 2020-2029년 제안별 약물 발견 시장의 벨기에 인공지능(AI) (미화 백만 달러)

표 140 2020-2029년 유형별 약물 발견 시장의 인공 지능(AI)에 사용된 벨기에 소프트웨어(백만 달러)

표 141 2020-2029년 기술별 약물 발견 시장의 벨기에 인공 지능(AI)(백만 달러)

표 142 2020-2029년 기술별 약물 발견 시장의 인공 지능(AI)에 대한 벨기에 기계 학습(ML)(백만 달러)

표 143 2020-2029년 약물 유형별 약물 발견 시장의 벨기에 인공 지능(AI)(백만 달러)

표 144 응용 분야별 약물 발견 시장의 벨기에 인공 지능(AI)(2020-2029년)(백만 달러)

표 145 응용 분야별 약물 발견 시장의 인공 지능(AI) 분야 벨기에 소설 약물 후보(2020-2029년)(백만 달러)

표 146 2020-2029년 약물 발견 시장의 벨기에 인공 지능(AI)(표시별)(백만 달러)

표 147 2020-2029년 적응증별 약물 발견 시장의 인공지능(AI) 분야 벨기에 면역종양학(백만 달러)

표 148 최종 용도별 약물 발견 시장의 벨기에 인공 지능(AI)(2020-2029년)(백만 달러)

표 149 2020-2029년 유럽 의약품 발견 시장의 나머지 인공 지능(AI) 제공량(백만 달러)

인포그래픽을 원하시면 아래 양식을 작성해주세요

"제출" 버튼을 클릭하면 Data Bridge 시장 조사에 동의하게 됩니다. 개인 정보 정책 그리고 이용약관

연구 방법론:

데이터 수집 및 기준 연도 분석은 표본 크기가 큰 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 획득한 모든 데이터를 사전에 조사하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 나타나는 정보 불일치에 대한 조사도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석되고 추정됩니다. 또한 시장점유율 분석과 주요 동향 분석이 시장보고서의 주요 성공요인이다. 자세한 내용을 알아보려면 분석가 전화를 요청하거나 문의 사항을 드롭다운하세요.

DBMR 연구팀이 사용하는 주요 연구 방법론은 데이터 마이닝, 데이터 변수가 시장에 미치는 영향 분석 및 1차(업계 전문가) 검증을 포함하는 데이터 삼각측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 표준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 더 자세히 알고 싶으시면 문의해 업계 전문가에게 문의하세요.

연구 방법론을 위해 아래 양식을 작성해 주십시오.

"제출" 버튼을 클릭하면 Data Bridge 시장 조사에 동의하게 됩니다. 개인 정보 정책 그리고 이용약관

사용자 정의 가능:

Data Bridge Market Research는 고급 형성 연구 분야의 선두주자입니다. 우리는 기존 고객과 신규 고객에게 목표에 부합하고 적합한 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가의 시장을 이해하는 대상 브랜드의 가격 추세 분석(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 리퍼브 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 타겟 경쟁사에 대한 시장 분석은 기술 기반 분석부터 시장 포트폴리오 전략까지 분석할 수 있습니다. 귀하가 찾고 있는 형식과 데이터 스타일에 대한 데이터가 필요한 경쟁업체를 얼마든지 추가할 수 있습니다. 당사의 분석가 팀은 원시 Excel 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트로 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

사용 가능한 사용자 정의를 위해 아래 양식을 작성하십시오.

"제출" 버튼을 클릭하면 Data Bridge 시장 조사에 동의하게 됩니다. 개인 정보 정책 그리고 이용약관

무료 샘플 보고서

라이센스 유형 선택

  • 4200.00
  • 3500.00
  • 2000.00
  • 5500.00
  • 7500.00

왜 우리를 선택 했습니까

산업 범위

DBMR은 다양한 산업 분야에서 전 세계적으로 활동하여 다양한 분야의 지식을 제공하고 고객에게 해당 산업뿐만 아니라 다른 산업이 생태계에 어떤 영향을 미칠지에 대한 통찰력을 제공합니다.

지역 적용 범위

Data Bridge의 적용 범위는 선진국이나 신흥 경제에만 국한되지 않습니다. 우리는 다른 시장 조사나 비즈니스 컨설팅 회사가 연구를 수행한 적이 없는 가장 광범위한 국가를 대상으로 전 세계적으로 작업하고 있습니다. 아직 알려지지 않은 영역에서 고객을 위한 성장 기회를 창출합니다.

기술 범위

오늘날의 세계에서는 기술이 시장 정서를 주도하므로, 우리의 비전은 고객에게 개발된 기술뿐만 아니라 업계에 혼란을 야기할 시장에서 예상치 못한 기회를 제공함으로써 제품 수명 주기 전반에 걸쳐 다가오는 기술 변화에 대한 통찰력을 제공하는 것입니다. . 이는 혁신으로 이어지고 고객이 승자가 될 수 있습니다.

목표 지향 솔루션

DBMR 목표는 고객이 솔루션을 통해 목표를 달성하도록 돕는 것입니다. 따라서 우리는 고객의 요구에 가장 적합한 솔루션을 형성적으로 만들어 고객이 대규모 전략을 추진하는 데 드는 시간과 노력을 절약합니다.

비교할 수 없는 분석가 지원

우리 분석가들은 고객의 성공에 자부심을 갖고 있습니다. 다른 곳과 달리 우리는 올바른 요구 사항을 결정하고 서비스를 통해 혁신을 불러일으키는 24시간 분석가 지원을 통해 고객과 함께 목표를 달성할 수 있다고 믿습니다.

Banner

고객 추천사