2022년 12월 26일

IoT의 출현 – 우리의 존재를 변화시킬 것으로 예상되는 전략적 동향과 기술

사물 인터넷(IoT)은 전 세계 인구에게 변혁적인 경험이자 혁명이었습니다. IoT는 수십억 명의 대중의 삶에 급속도로 확산되었으며, 모든 단일 지역이 아닌 IoT 사용의 영향을 받는 개인의 일부(대부분이기는 하지만)만이 향후 몇 년 동안 둔화될 것으로 예상되지 않습니다. 세계의 개인. IoT 자체는 지금까지 짧은 수명 동안 수많은 변화와 혁신을 거쳐왔습니다. 2018년에 전 세계가 경험한 주요 혁신 및 트렌드 중 일부와 2019년에 예상되는 주요 혁신 및 트렌드 중 일부는 아래에서 면밀히 조사되었습니다.

2018

  • 의료, 산업, 소매 분야의 IoT 성장 – 2018년 한 해 동안 관찰된 주요 추세 중 하나는 의료, 산업 및 소매 부문에서 IoT의 상당한 채택과 그에 따른 이점이었습니다. IoT의 상당한 보급과 호황으로 인해 대부분의 주요 부문에서 IoT가 채택되었습니다. 그러나 가장 놀라운 점은 앞서 언급한 부문에서 상당한 성장이 이루어졌다는 것입니다. IoT 사용과 관련하여 경험하고 경험한 운영의 이점과 용이성은 이러한 채택의 주요 요인 중 하나였습니다. IoT는 웨어러블 디바이스, 공장 자동화, 상품 공급망 투명성 등의 형태로 채택되었습니다.
  • 모바일 상호 운용성 – 모바일 상호 운용성은 간단히 말해서 인터넷을 통해 연결된 자동화된 장비 및 장치의 운영을 처리하는 것입니다. 이는 단순히 이러한 장비에 물리적으로 연결할 필요가 없는 모바일 장치에 연결된 장치의 상태, 효율성, 효과를 간과하는 것으로 해석됩니다. 공장 자동화에서는 대부분의 장비와 장치가 개인의 물리적 상호작용이 아닌 이러한 모바일 상호작용을 통해 제공되는 작업과 명령을 기반으로 작동합니다. 이를 위해서는 모바일 연결 장치를 통해 전체 운영주기를 간과할 필요가 있습니다. 이러한 추세는 "스마트 홈"의 출현과 함께 산업(예: Industry 4.0)의 IoT 채택과 관련된 성장으로 인해 상당한 수요가 있었습니다.
  • 엣지 컴퓨팅 – 엣지 컴퓨팅은 클라우드 스토리지와 데이터에 액세스하려는 사용자 사이의 물리적 인프라 인터페이스입니다. 엣지 컴퓨팅은 클라우드의 크기와 사용자로부터의 격리된 특성으로 인해 사용자가 클라우드에서 데이터에 액세스할 수 없고 지연되는 문제를 해결하기 위해 만들어졌습니다. 엣지 컴퓨팅은 이러한 스토리지 인프라에 일정량의 데이터를 보관하는 물리적 스토리지 및 인터페이스 인프라로, 사용자에게 더 빠르고 쉽게 액세스할 수 있는 서비스를 제공하는 데 도움이 됩니다. 더 중요한 것은 이러한 인프라가 사용자에게 더 가까이 위치하여 사용자의 액세스를 돕는다는 것입니다. 이러한 추세는 전 세계적으로 IoT의 출현과 보급 이후 생성된 엄청난 양의 데이터로 인해 상당한 수요와 응용을 감독했습니다.
  • 데이터 수집 – 주요 마케팅 및 영업 조직에서는 현재 추세에 있는 소비자의 행동과 함께 목표로 삼을 방법을 결정하고 개인의 선호도를 결정하는 데 IoT의 사용을 채택했습니다. IoT의 데이터 수집은 인터넷을 통해 수행된 검색, 소셜 네트워크를 통해 수행된 활동, 온라인 쇼핑 습관 및 개인이 다른 사람보다 선호하는 일부 자료의 반복성을 통해 수행된 데이터의 수집으로 정의할 수 있습니다. 이러한 데이터 생성은 소비자의 개별 선호도와 특정 지역의 현재 소비자 추세를 결정하는 데 도움이 됩니다.
  • 해석학 IoT 도입으로 인해 생성되는 데이터의 양이 늘어나면서, 생성되는 막대한 양의 데이터에 대한 이해가 필요해졌습니다. 이로 인해 생성된 데이터 유형을 식별하고 유용한 데이터로 분류하는 등의 다음 조치 과정을 식별하는 데 도움이 되는 분석이 채택되었습니다. 추가 마케팅 목적으로 이를 사용합니다. 데이터를 저장합니다. 데이터 분석은 생성된 데이터 세트 유형을 분류하고, 조치를 취하거나 저장하는 데 유용한지, 허용되지 않는 데이터 세트를 폐기하는지를 다룹니다.

2019

  • 인공지능 - IoT 분야에서 AI(인공지능)의 보급이 요구되고 있으며, 이는 내년의 주요 트렌드 중 하나가 될 것으로 예상됩니다. IoT에 인공지능을 접목하는 것은 기기와 장비를 자급자족할 수 있도록 전환하는 것으로 단순화되어, 모바일 기기를 통해 주어지는 간단한 작업을 기기가 이해하도록 돕고, 머신러닝을 접목하고 생성된 데이터를 분석해 행동을 취하게 한다. 특정 데이터 세트로 인해 발생합니다. IoT에서 AI의 주요 응용 분야는 스마트 홈, 스마트 미러, 공장 자동화, 자율 주행 차량, 전자 장치 및 가전 제품에서 찾을 수 있습니다.
  • 하드웨어 및 소프트웨어의 혁신 – 최종 사용자를 위한 주요 애플리케이션에서 IoT의 채택 수준과 수요가 증가함에 따라 사용자 경험 품질과 장치 성능에 대한 혁신이 더욱 필요해졌습니다. 이로 인해 다양한 장치와 장비의 작동에 부착되어 사용되는 센서의 성능이 향상되었습니다. 소비자의 주요 요구 중 하나는 과도한 전력 소비 없이 명령 세트와 데이터 세트를 처리할 수 있는 처리 속도와 기능을 기반으로 장치의 성능 수준이 향상되는 것이었습니다. 이는 이러한 장치와 장비의 하드웨어와 소프트웨어 전체에 대한 혁신에 중점을 두고 더욱 완벽하고 서로 더 효율적이고 효과적으로 협력할 수 있도록 하는 것으로 끝날 것으로 예상됩니다. 예를 들어 mmWave 센서의 주요 응용 분야입니다. 실리콘 기반 칩셋 및 프로세서.
  • 5G 기반 기술 – 5G는 혁신과 더 높은 대역폭 및 셀룰러 기술 출시 경쟁에서 마지막이 되기를 원하지 않는 주요 통신 회사로 인해 큰 수요가 있을 것으로 예상되는 또 다른 기술 혁신입니다. 하지만 5G 및 그에 수반되는 기술의 출시는 주요 통신 기관에서 제시한 중요한 기여나 혁신이 보이지 않기 때문에 주의해서 다루어야 합니다. 그럼에도 불구하고 5G의 개념은 이전에 볼 수 없었던 대역폭, 상당한 데이터 속도, 600MHz 스펙트럼 지원을 제안하는 다양한 컨퍼런스 및 조직 미리보기에서 제시되었습니다. 이러한 모든 기능을 상당히 저렴한 비용, 넓은 적용 범위 및 IoT 배포를 위한 특정 애플리케이션으로 제공합니다.
  • 고객 지향적 조항 - 중요한 데이터 세트를 수집하고 이러한 특정 데이터 세트를 분석하면 시장에서 고객 경험과 개인 행동 기반 서비스 및 상품이 향상되었습니다. 예를 들어, 특정 검색이나 선호도 지향 작업을 위해 전자 장치나 가전제품에 인공 지능을 사용할 때마다 우리는 특정 행동이나 선호도를 데이터베이스에 등록합니다. 이 특정 데이터는 주요 조직에 노력을 집중할 수 있는 데이터베이스를 제공하고 이후 소비자의 요구에 따라 상품 및 서비스의 특정 제공을 제공하는 데 도움이 됩니다.
  • 보안 인프라 – IoT 및 장치 상호 연결의 주요 위협 중 하나는 사용자의 데이터가 도난당하는 위협이었습니다. 소비자의 요구를 충족하기 위해 엄청난 양의 데이터 세트가 생성되고 저장됨에 따라 이러한 데이터 세트가 해킹되어 도난당하는 사례가 있었습니다. 이로 인해 사용자의 개인 정보 보호에 대한 관심이 높아짐에 따라 보다 안전한 인프라에 대한 수요가 크게 증가했으며, 이로 인해 보다 복잡한 데이터 구조와 강력하고 안전한 인프라가 필요하게 되었습니다.


라이센스 유형 선택

  • 7000
  • 4800
  • 3000
  • 8000
  • 12000
Banner

고객 추천사