로봇올바른 차원, 즉 인류에게 해를 끼치 지 않는 차원에서 사용하면 작업을 더 쉽고 효율적으로 만들 수 있기 때문에 기술의 미래로 간주됩니다. 인공 기술은 성장하고 있으며 이제 일상 생활의 일부가 되면서 널리 받아들여지고 있습니다. 그러나 이 모든 것에서 그러한 지능형 기계가 얼마나 빨리 학습할 수 있고 얼마나 효과적인지에 대한 중요한 질문이 제기되고 있습니다. 우리는 인공지능을 학습하는 속도를 모릅니다. 그러나 그 과학자는 실험의 틀을 잡고 이 질문에 정확하게 대답하여 다음과 같은 사실을 보여주었습니다.양자기술을 통해 학습 과정의 속도를 높일 수 있습니다. 양자 프로세스는 기계가 다른 차원에서 학습하는 데 적합한 몇 가지 사항을 추가합니다. 물리학자들은 단일 광자용 양자 프로세서를 로봇으로 사용하여 이미 이 결과를 달성했습니다. 로봇은 컴퓨터 게임을 풀거나, 사람의 목소리를 인식하거나, 최적의 치료법을 찾는 데 도움을 줄 수 있다는 점에서 고도로 발전했습니다. 이것은 지난 몇 년간 어떤 것들이 어떻게 생산되었는지를 기술한 몇 안 되는 사례들이다.
새로운 기술로 새로운 기계를 개발하려는 지속적인 경쟁은 우리 세계가 기술 중심 접근 방식을 따르고 있다는 증거이지만 문제는 개선을 달성할 수 있는 방법과 수단이 무엇인지입니다. 양자물리학은 많은 발전을 이루었고 양자역학에 관한 많은 기술이 개발되어 양자물리학이 매우 거대하고 영향력 있는 힘을 가지고 있음을 증명합니다. 그것은 종종 독특하고 수수께끼 같은 이론일 뿐만 아니라 실제 적용도 가능합니다.
실제 생활에서 이러한 기술은 항상 모든 차원에서 올바른 솔루션을 제공하는 것으로 입증되었습니다. 따라서 두 분야를 병합한다는 아이디어, 즉 완전 자동화된 기술이 있습니다.인공지능대부분의 자율 기계에 사용되는 자체 프로그램 중심 시스템인 반면, 강력한 알고리즘을 갖춘 양자물리학이 발전했습니다. 지난 몇 년 동안 과학자들은 이 두 세계를 연결하는 방법을 조사하기 시작했습니다. 그리고 그들은 또한 양자역학이 로봇 학습에 어떤 도움이 될 수 있는지, 아니면 그 반대인지를 배우고 연구하고 있었습니다.