인공지능(AI)은 이제 거의 모든 분야에서 활용되고 있으며, 작업량이 많이 줄어들기 때문에 사람들은 머신러닝과 인공지능에 크게 의존하고 있습니다. 칩 산업은 매우 빠르게 성장하고 있으며, 많은 산업에서 대규모로 활용되고 있기 때문에 생산량도 매우 빠르게 증가하고 있습니다. 현재 컴퓨터 칩은 원자층 증착(ALD)이라는 특별한 유형의 기술을 사용하여 만들어지며, 이는 원자 1개 두께만큼 미세한 막을 생성할 수 있습니다. 이 기술은 반도체 소자 개발에 많이 활용되고 있으며, 리튬 배터리, 태양전지 등 에너지 관련 분야에도 활용되고 있다.
오늘날 제조업체들은 새로운 유형의 필름을 만들기 위해 점점 더 ALD에 의존하고 있지만 각각의 새로운 재료에 대한 공정을 미세 조정하는 방법을 알아내는 데는 시간이 걸립니다. 문제의 일부는 연구자들이 최적의 성장 조건을 결정하기 위해 주로 시행착오를 사용한다는 것입니다. 그러나 이 과학 분야 최초의 연구 중 하나인 최근 발표된 연구에서는 인공 지능(AI)을 사용하는 것이 더 효율적일 수 있음을 시사합니다. ACS 응용 재료 및 인터페이스 연구에서 미국 에너지부(DOE) 아르곤 국립 연구소의 연구원들은 AML 프로세스의 자율적 최적화를 위한 몇 가지 AI 기반 접근 방식을 설명합니다. 그들의 작업은 각 접근 방식의 상대적인 강점과 약점뿐만 아니라 새로운 프로세스를 보다 효율적이고 경제적으로 개발하는 데 사용할 수 있는 통찰력을 설명합니다. "이러한 모든 알고리즘은 오늘날 평소처럼 샘플을 반응기에 넣고, 꺼내고, 측정하는 등의 시간을 낭비하지 않기 때문에 최적의 조합으로 수렴하는 훨씬 빠른 방법을 제공합니다. 원자로에 연결되어 있다"고 이번 연구의 공동 저자이자 Argonne 수석 재료 과학자 Angel YanguasGil이 말했습니다.