개요
자동차 산업은 인공지능(AI)과 머신러닝(ML) 기술의 발전에 힘입어 변화하고 있습니다. AI와 ML은 차량 성능을 향상하고 안전 기능을 개선하며 운전 경험을 혁신하는 혁신적인 솔루션을 제공하여 보다 안전하고 스마트한 자동차를 위한 길을 열었습니다. AI와 ML은 자동차 가치 사슬을 통해 애플리케이션을 찾습니다. 현재 설계, 공급망, 생산, 후반 작업을 포함한 자동차 제조 분야에서 구현되고 있습니다. AI와 ML은 '운전자 지원' 및 '운전자 위험 평가' 시스템에 구현되고 있습니다. 이것은 운송 방식을 변화시키고 있습니다. AI는 예측 유지보수, 보험 등 애프터마켓 서비스도 변화시키고 있습니다. 자동차 산업에서 머신러닝을 사용하면 새로운 스마트 제품이 탄생하고 작업 방식이 최적화되었습니다. 이 사례 연구는 선도적인 시장 조사 컨설팅 회사인 DBMR(Data Bridge Market Research)과 고객이 AI 및 ML을 활용하여 보다 안전하고 스마트한 자동차를 만들 수 있도록 지원하는 DBMR의 역할에 중점을 둡니다.
인공 지능(AI)은 현재 Autodesk 및 기타 여러 기존 소프트웨어에서 널리 사용되고 있습니다. 여러 설계 연구를 수행하는 데 사용할 수 있는 AI 고차원 기능. AI의 활용은 신차 개발 단계부터 시작된다. 증강 현실과 가상 현실을 사용하면 더 나은 디자인 아이디어를 개발하고 비용이 많이 들기 전에 실수를 수정할 수 있습니다. 스마트 시스템은 미래의 자동차 부품 및 모델에 대한 다양한 디자인 아이디어를 제공할 수 있으며, 자동차 회사는 최고의 아이디어를 선택할 수 있습니다.
클라이언트 배경:
고객은 기술 발전의 선두에 서기를 목표로 하는 저명한 자동차 제조업체였습니다. 자동차 산업을 변화시키는 AI와 ML의 잠재력을 인식한 고객은 이러한 기술을 차량에 통합하여 안전성을 강화하고 성능을 최적화하며 진화하는 소비자 요구를 충족하고자 했습니다.
클라이언트가 직면한 과제:
고객은 자동차에 AI 및 ML 기술을 구현하는 데 다음과 같은 몇 가지 문제에 직면했습니다.
- 차량 안전 향상을 위한 AI 및 ML 통합의 가장 효과적인 사용 사례 식별
- AI 및 ML 모델 학습을 위한 데이터 품질 및 가용성 문제 극복
- 규제 준수를 보장하고 AI 기반 기능과 관련된 안전 문제 해결
- AI 및 ML 기술을 기존 차량 아키텍처에 통합하는 과정의 복잡성 탐색
- 아시아 태평양, 북미, 유럽, 중동 및 아프리카, 남미 등 다양한 지역과 글로벌 수준의 AI 및 ML 분야 자동차 TAM(Total Addressable Market)에 대해 알고 싶었습니다.
- 공급업체 선택 기준과 회사가 공급업체를 선택할 수 있는 방법에 대해 알고 싶었습니다. 공급업체를 선택할 때 클라이언트가 염두에 두어야 할 포인터는 무엇입니까?
- 기존 비즈니스 모델 및 고객 선호도에 대한 AI 및 ML의 영향 평가
- 자율 주행 기능을 위해 AI 알고리즘과 기계 학습을 활용할 수 있는 기회를 식별합니다. 필수 시장의 미래 성장률
고객은 이러한 과제를 해결하고 자동차 시장에서 AI 및 ML의 현재 시나리오를 이해하기 위해 Data Bridge Market Research에 접근했습니다. Data Bridge Market Research는 신흥 기술에 대한 전문 지식으로 유명한 신뢰할 수 있는 시장 조사 컨설팅 회사입니다. 또한 고객은 자동차 시장에서 채택하고 있는 주요 업체에 대한 자세한 연구와 함께 현재 동향과 기술에 대해 알고 그에 따라 비즈니스를 확장할 수 있기를 원했습니다. DBMR은 시장 환경에 대한 포괄적인 분석을 수행하고, 관련 추세를 식별하며, 고객의 AI 및 ML 구현 전략을 안내하기 위한 실행 가능한 통찰력을 제공하는 것이었습니다.
고객의 과제를 극복하기 위한 DBMR 시장 조사 접근 방식
DBMR은 고객을 돕기 위해 다음과 같은 접근 방식을 채택했습니다.
- 시장 분석: DBMR은 자동차 산업에 대한 광범위한 분석을 수행하여 시장 동향, 경쟁사 분석 및 고객 선호도를 조사했습니다. 이 분석은 보다 안전하고 스마트한 자동차를 만드는 데 있어 AI와 ML의 잠재적 적용에 대한 귀중한 통찰력을 제공했습니다.
- 사용 사례 식별: DBMR은 고객의 이해관계자와 긴밀하게 협력하여 AI와 ML이 차량 안전을 크게 향상할 수 있는 특정 사용 사례를 식별했습니다. 이러한 사용 사례는 첨단 운전자 지원 시스템(ADAS)부터 예측 유지 관리 및 지능형 내비게이션 시스템까지 다양했습니다.
- 데이터 분석 및 모델 개발: DBMR은 기존 데이터 소스를 분석하고 AI 및 ML 모델 교육을 위한 고품질 데이터를 수집하고 선별하는 전략을 추천함으로써 고객이 데이터 품질 및 가용성 문제를 극복하도록 도왔습니다. DBMR은 또한 고객의 특정 사용 사례에 맞는 맞춤형 AI 및 ML 모델 개발을 지원했습니다.
- 안전 및 규정 준수: DBMR은 AI 기반 자동차 기능에 적용되는 안전 규정 및 표준을 철저히 분석했습니다. 이 평가를 통해 고객의 AI 및 ML 구현이 필요한 안전 요구 사항을 준수하고 잠재적 위험을 해결하며 소비자 신뢰를 보장하는지 확인했습니다.
- 경쟁 분석: 엄격한 자동차 산업에서 경쟁력을 유지하기 위해 고객은 철저한 시장 점유율 분석과 전략적 개발 분석이 필요했습니다. 고객은 DBMR이 시장에서 자사의 현재 위치를 평가하고, 자사의 강점과 약점을 파악하고, 경쟁사가 채택한 전략을 평가하기를 원했습니다. 이 분석은 고객이 자신을 차별화하고 성장 기회를 식별하며 경쟁 우위를 확보하기 위한 효과적인 비즈니스 전략을 고안하는 데 도움이 됩니다.
- 공급업체 선택 기준: 고객은 비용 프로세스 개선을 위해 고품질 첨가제를 조달하기 위해 신뢰할 수 있는 공급업체를 선택하는 데 지침이 필요했습니다. 그들은 DBMR이 품질, 신뢰성, 가격 및 납품 능력을 기반으로 공급업체 선택 기준을 정의하는 데 도움을 주기를 원했습니다. 고객은 DBMR이 고객이 원하는 요구 사항을 지속적으로 충족할 수 있는 신뢰할 수 있는 공급업체를 식별하여 가치 사슬을 구축하는 데 도움을 줄 것으로 기대했습니다.
권장 사항 및 구현
시장 조사 결과를 바탕으로 Data Bridge Market Research는 고객에게 다음을 포함한 일련의 권장 사항을 제공했습니다.
- 통합 로드맵: DBMR은 AI 및 ML 기술을 고객의 차량 생산 프로세스에 통합하는 데 필요한 단계를 설명하는 포괄적인 구현 로드맵을 개발했습니다. 로드맵에서는 데이터 수집, 모델 개발, 하드웨어 통합 및 소프트웨어 검증과 같은 요소를 다루었습니다.
- 파트너십 및 인재 확보: DBMR은 고객이 AI 및 ML 기술 제공업체와의 전략적 파트너십을 식별하도록 지원하고 연구 기관 또는 스타트업과의 잠재적 협력을 권장했습니다. 또한 DBMR은 성공적인 AI 및 ML 통합에 필요한 전문 지식에 대한 액세스를 보장하기 위해 인재 확보 전략에 대해 고객에게 조언했습니다.
- 테스트 및 검증: DBMR은 AI 및 ML 기능에 대한 엄격한 테스트 프로토콜과 검증 절차를 설계하는 과정에서 고객을 지원했습니다. 이를 통해 생산 차량에 배포되기 전에 AI 기반 시스템의 기능, 신뢰성 및 안전성이 보장되었습니다.
결과 및 비즈니스 영향
DBMR의 권장 사항을 구현하여 고객에게 중요한 결과를 얻었습니다.
- 향상된 안전 기능: 고객은 AI와 ML 기술을 통합하여 잠재적인 위험을 실시간으로 감지하고 대응할 수 있는 첨단 운전자 지원 시스템(ADAS)을 포함하여 차량 안전 기능을 개선했습니다. 그 결과 사고가 감소하고 도로 안전이 향상되었으며 운전자의 자신감이 향상되었습니다.
- 최적화된 성능: 고객 차량은 AI 및 ML 기반 최적화 알고리즘을 통해 향상된 성능과 연비를 경험했습니다. 이러한 알고리즘은 엔진 성능, 변속기, 공기역학 등 실시간 데이터와 주행 조건을 기반으로 차량 시스템을 최적화했습니다.
- 개인화된 사용자 경험: AI 및 ML 기술을 통해 클라이언트는 운전자 행동, 선호도 및 기록 데이터를 분석하여 개인화된 사용자 경험을 제공할 수 있었습니다. 그 결과 맞춤형 기능, 지능형 인포테인먼트 시스템, 모바일 장치와의 원활한 통합이 가능해졌습니다.
- 경쟁 우위: 고객은 AI 및 ML 기술을 효과적으로 활용함으로써 자동차 산업에서 경쟁 우위를 확보했습니다. 그들은 더 안전하고 스마트한 자동차를 만들고, 기술에 정통한 고객을 유치하고, 경쟁사와 브랜드를 차별화하는 분야의 리더로 자리매김했습니다.
결론:
Data Bridge Market Research는 AI 및 ML 기술을 전략적으로 채택하여 고객의 비즈니스 성장을 촉진하는 데 중요한 역할을 했습니다. 이제 자동차 제조업체는 AI와 ML을 활용하여 비용을 절감하고, 제품을 최적화하고, 효율성을 개선하고, 개발 주기를 강화하고, 보다 지속 가능한 생태계를 만들 방법을 모색하고 있습니다. DBMR은 포괄적인 시장 조사를 수행하고 귀중한 통찰력을 제공하며 구현을 지원함으로써 고객을 돕습니다. DBMR은 고객이 가상 비서 및 자율 주행 기능을 효과적으로 활용할 수 있도록 지원했습니다. 본 사례 연구는 전문적인 시장 조사 및 컨설팅 서비스 활용의 긍정적인 결과를 보여줍니다. 그 결과, 고객은 향상된 사용자 경험, 고급 자율 주행 기능, 확장된 비즈니스 기회를 달성하여 보다 안전하고 역동적인 가상 비서 및 자율 주행 자동차 산업에서 시장 리더로서의 입지를 확고히 했습니다.