개요
인간이 아닌 알고리즘을 사용하여 학습 모델을 생성함으로써 자동화된 기계 학습(AML)은 매개변수 선택 및 데이터 정리를 포함하여 수많은 반복적이고 지루한 프로세스를 줄이는 데 도움이 됩니다. 데이터 과학의 구성 요소인 머신러닝 덕분에 가설을 세우고 테스트하는 과정은 계속될 것입니다. autoML의 목표는 이러한 프로세스를 자동화하여 액세스 가능한 기능, 알고리즘 및 하이퍼파라미터 범위 내에서 최적의 알고리즘을 찾는 것입니다. ML 워크플로의 반복 프로세스에 대한 지능적인 자동화는 autoML을 통해 더욱 쉬워질 것으로 예상됩니다. 이를 통해 고가치 리소스가 단조로운 작업에서 가치를 제공하는 최고 성능 모델의 분석 및 평가로 전환할 수 있습니다. 결과적으로 이를 기반으로 모델과 솔루션을 생산하는 데 걸리는 시간이 크게 단축됩니다.
AutoML 시스템은 거의 최적의 성능을 달성할 수 있을 만큼 신속하게 예측 모델을 생성할 수 있지만 그 도달 범위는 여전히 제한적이며 완전한 가능성은 실현되지 않은 상태로 남아 있습니다. 엔지니어링 및 데이터 준비 기능에서 AutoML이 점점 더 보편화되고 있음에도 불구하고 엔지니어링보다는 예술에 더 가까운 도메인 의존도가 높은 애플리케이션이 여전히 있습니다. AutoML은 큰 진전을 이루고 있는 활발한 연구 주제이기 때문에 ML 기반 솔루션의 채택을 가속화하는 데 중요한 역할을 할 것입니다(여러 플레이어가 전체 모델 개발 프로세스를 자동화하는 데 있어 기존 과제를 해결하고 있음).
클라이언트의 과제
클라이언트는 자동화된 기계 학습(AML)과 관련된 기회와 과제를 분석하고 싶었습니다. 클라이언트의 주요 목표는 더 나은 의사 결정, 저렴한 비용, 향상된 효율성, 혁신에 대한 다가오는 고객 요구에 맞춰 솔루션 제공을 조정하고 기술 발전의 최전선에 서서 경쟁 우위를 확보하는 것입니다.
클라이언트가 요청한 요구 사항은 다음과 같습니다.
DBMR 접근/연구 방법론
DBMR은 시장 환경에 대한 포괄적인 분석을 수행하여 관련 동향을 파악하고 고객에게 지침이 될 실행 가능한 통찰력을 제공했습니다. 우리는 고객 요구 사항에 따라 귀중한 통찰력을 제공하기 위해 데이터를 분석하고 검증하는 삼각대 모델을 따랐습니다. 자동화된 기계 학습(AML)을 분석하고 추정하기 위한 DBMR의 접근 방식 또는 연구 방법론은 다음과 같습니다.
우리의 접근 방식에는 데이터를 추정, 분석 및 검증하기 위한 1차 및 2차 연구 방법론을 모두 사용하는 것이 포함됩니다.
DBMR은 데이터 분석 및 검증을 위한 하향식 및 상향식 방법에 대한 2차 및 1차 연구를 수행했습니다. 이 접근 방식은 글로벌, 지역 및 국가 수준 데이터에 대해 언급된 각 세그먼트에 대한 정성적 및 정량적 데이터에 액세스하는 데 활용되었습니다.
클라이언트 요구 사항을 분석하기 위해 위의 방법론을 따랐습니다.
따라서 위에서 언급한 접근 방식을 따르면 그에 따라 시장 통찰력이 고객에게 제공됩니다.
비즈니스 솔루션
다음은 자동화된 기계 학습(AML) 솔루션 시장을 분석하는 동안 제공되는 솔루션입니다.
비즈니스 영향
클라이언트는 시장 경쟁력, 향후 기술 구현, 다양한 국가의 주요 최종 사용자에게 서비스를 제공하는 데 도움이 될 전략적 단계/계획에 대한 명확한 통찰력을 갖고 있었습니다. 회사는 구매자 여정의 다양한 지점에서 가장 효과적인 솔루션을 제공하는 최신 자동화 제품을 통해 전환율을 향상시켰습니다.
결론
Data Bridge Market Research는 각 요구 사항을 충족하기 위해 AML(자동화된 기계 학습) 시장과 관련된 심층적인 통찰력을 제공했습니다. 이에 더해, 보고서의 사실적이고 통합된 정보는 고객이 기술 침투 측면에서 회사의 성장을 평가하는 데 도움이 될 것이며 의사 결정 및 향후 계획에도 더욱 활용될 수 있습니다. 이 외에도 고객은 보고서 정보에서 비즈니스 기회에 액세스/포착할 수도 있습니다.