조항

2022년 12월 19일

인공지능을 통한 신약개발의 전환

최근 인공지능(AI)의 활용이 빠른 속도로 증가하고 있다. 거의 모든 분야에서 AI의 활용이 늘어나고 있습니다. 적응하면서 많은 일이 순조로워지고 있습니다. AI에 대한 과대광고가 가속화됨에 따라 대형 시장 참여자와 판매자는 자사의 제품과 서비스에서 AI를 활용하는 방법을 홍보하기 위해 안간힘을 쓰고 있습니다. 인공지능은 주로 컴퓨터 시스템을 통해 인간의 지능 프로세스를 기계로 재현하는 것입니다. 일반적으로 그들이 AI라고 부르는 것은 단순히 기계 학습과 같은 AI의 한 구성 요소일 뿐입니다. AI에는 기계 학습 알고리즘을 작성하고 훈련하기 위한 하드웨어와 소프트웨어의 조합이 필요합니다. Python, R, Java 등 AI와 유사한 몇 가지 프로그래밍 언어가 인기가 있습니다.

우리 DBMR 팀은 기계 학습 운영화 소프트웨어 시장을 조사한 결과 2022~2029년 예측 기간 동안 북미가 기계 학습 운영화 소프트웨어 시장을 지배하고 주요 시장의 존재로 인해 예측 기간 동안 지배력 추세를 계속 번성할 것임을 목격했습니다. 이 지역의 핵심 플레이어와 기술 혁신의 수가 증가합니다. 시장은 2022~2029년 예측 기간 동안 44.7%의 CAGR을 보일 것으로 예상됩니다.

연구에 대해 더 자세히 알아보려면 다음 사이트를 방문하세요. https://www.databridgemarketresearch.com/ko/reports/global-machine-learning-Operationalization-software-market

AI의 역사

최근 데이터 양의 증가, 알고리즘의 고급화, 컴퓨팅 성능 및 저장 용량의 향상으로 인해 AI가 더욱 널리 보급되었지만 이 용어는 1956년에 도입되었습니다. 당시 그들은 문제 해결 및 상징적 방법과 같은 주제를 탐구했습니다. 1960년대에 미국 국방부는 이 분야에 진정한 관심을 갖고 인간의 기본적인 추론을 모방하도록 컴퓨터를 훈련시키기 시작했습니다. 예를 들어, DARPA(Defense Advanced Research Projects Agency)는 1970년대에 거리 매핑 프로젝트를 완료했습니다. 이 초기 연구는 인간의 능력을 보완하고 향상시키도록 설계된 의사 결정 지원 시스템과 스마트 검색 시스템을 포함하여 오늘날 컴퓨터에서 볼 수 있는 자동화 및 형식적 추론을 위한 경로를 구축했습니다.

AI가 세상을 어떻게 변화시키고 있는가?

AI는 온라인 검색 추천, 챗봇, 음성 지원 등과 같은 중요한 이점으로 우리 삶을 축복하고 있습니다. 날이 갈수록 그것은 우리 삶의 필수적인 부분이 되어가고 있습니다. AI는 다양한 분야에서 더 높은 생산률과 더 높은 생산성으로 이어질 것이기 때문에 미래에는 엄청난 이점을 갖게 될 것입니다. 현재와 ​​가까운 미래에도 인공지능을 활용한 자동화에는 시간이 많이 걸립니다. 수작업 시간을 자동화할 수 있습니다. 그것은 모든 곳에 적용 가능합니다. 교통 상황이나 기상 상황을 예측하여 어디에서나 사용할 수 있습니다. AI에서 자동화를 사용하는 것은 다른 것 중에서도 가장 큰 이점 중 하나입니다.

인공지능의 장점

Pharmaceutical Market of AI at a Glance

  • 인적 오류 감소

인공지능은 이른바 '인적 오류'를 줄이는 데 도움이 된다. 인간은 실수를 할 수밖에 없지만 컴퓨터 시스템은 그렇지 않습니다. 컴퓨터가 올바르게 프로그래밍되어 있으면 이러한 실수가 발생하지 않습니다. AI는 특정 알고리즘 세트를 통해 이전에 수집된 정보를 적용하여 유익하게 수행됩니다. 따라서, 이와 관련하여 오류가 최소화되고, 더 높은 정밀도의 가능성이 높아진다.

  • 인간 대신 위험을 감수합니다

AI 로봇의 도움으로 인간이 갖고 있는 여러 가지 위험한 제약을 극복할 수 있으며, AI 로봇은 우리를 대신해 어려운 일도 해 줄 수 있으며, 이는 인공 지능의 가장 중요한 장점 중 하나입니다.

예를 들어, 우크라이나의 체르노빌 원자력 발전소 폭발을 기억해 보면 당시에는 그러한 상황에서 방사선의 영향을 최소화하는 데 도움이 될 수 있는 AI 기반 로봇이 없었습니다. AI 로봇은 화재를 최소화해 대규모 군중의 구세주가 될 수도 있었다. AI 로봇은 개입이 위험할 수 있는 경우에 사용될 수 있습니다.

  • 전체 가용성

휴식 시간을 제외하면 평균적인 인간은 매일 약 4~6시간을 일하게 됩니다. 하루 종일 일하는 것은 인간에게 어렵고 불가능합니다. 일과 삶의 균형을 유지하고, 개인적인 책임을 처리하며, 지루한 업무 압박을 받는 것은 어렵습니다. 때로는 일부 작업이 필수적이며 특정 일정 내에 완료되어야 하지만 때로는 불가능할 때도 있습니다. AI를 활용하면 기계가 쉬지 않고 24시간 365일 작동하게 할 수 있고, 인간과 달리 지루할 틈도 없습니다.

  • 연구 지원

AI를 통해 연구자들은 다양한 소스에서 수집되는 대량의 데이터를 능가할 수 있습니다. 실시간 데이터를 사용하면 쉽게 번역할 수 있는 광범위한 정보를 연구에서 활용할 수 있습니다. 소아암 데이터 연구소(Childhood Cancer Data Lab)와 같은 의료 연구 기관에서는 의료 전문가가 광범위한 데이터 수집을 더 잘 관리할 수 있는 유용한 소프트웨어를 개발하고 있습니다. AI는 또한 질병 진행을 예방하기 위해 증상을 평가하고 감지하는 데 널리 사용되었습니다. 환자의 진행 상황을 추적하고, 중요한 진단 데이터를 복구하고, 인구 정보를 공유 네트워크에 지원하기 위해 원격 의료 솔루션이 실행되고 있습니다.

  • 의사의 스트레스 감소

일부 최신 연구 보고서에 따르면 주치의의 절반 이상이 마감일 압박과 기타 직장 요인으로 인해 스트레스를 받고 있다고 합니다. AI는 절차 간소화, 기능 자동화, 즉각적인 데이터 공유 및 작업 구성을 지원하며 일반적으로 의사가 일을 저글링하는 것을 피하는 데 도움이 됩니다. 그러나 AI는 진단을 설명하는 등 보다 시간 집약적인 작업을 지원할 수 있습니다. 예를 들어 의료 전문가는 스트레스 완화를 경험할 수 있습니다."

  • 보다 안전한 수술

외과 의사는 개복 수술이 필요할 수 있는 작은 공간에서 수술할 수 있는 향상된 기술 수준을 얻습니다. AI는 수술의 적절한 요구에 기여함으로써 의료 로봇 공학에서 적합한 위치를 찾는 데 도움을 주고 있습니다. 로봇은 민감한 장기와 조직 주변을 더 정확하게 탐색하고 감염 위험과 수술 후 통증을 줄이고 혈액 손실을 줄일 수 있습니다. 로봇수술은 절개부위가 작아 흉터가 적고 회복기간이 짧은 등 장점이 더 많다. 예를 들어, 네덜란드 마스트리히트 대학 의료센터는 2017년 AI 보조 로봇을 사용해 0.03mm보다 큰 작은 혈관을 봉합했습니다. 로봇은 손의 움직임이 로봇 손에 의해 수행되는 정확한 동작으로 변환되는 외과 의사에 의해 처리되고 관리됩니다.

우리 DBMT 팀은 산부인과 로봇 수술 시장을 조사한 결과, 지역 내 인구 사이에서 최소 침습 수술에 대한 수요가 증가함에 따라 북미 지역이 산부인과 로봇 수술 시장을 지배하는 것을 목격했습니다. 아시아 태평양 지역은 여성 건강 및 의료 지출에 대한 인식이 높아지면서 예측 기간 동안 상당한 성장을 보일 것으로 예상됩니다. 산부인과 로봇 수술 시장에서 활동하는 주요 업체로는 BOWA-electronic GmbH & Co. KG, Prima Medical, XCELLANCE Medical Technologies, ATMOS MedizinTechnik GmbH & Co. KG, Ethicon US, LLC., Johnson & Johnson Services, Inc.가 있습니다. , 파켈, Inc.

연구에 대해 더 자세히 알아보려면 다음 사이트를 방문하세요. https://www.databridgemarketresearch.com/ko/reports/global-gynecology-robotic-surgery-market

  • 예방 관리 강화

AI와 머신러닝은 감염병 예방 및 관리를 지원합니다. 발병 인텔리전스 플랫폼인 블루닷(Blue Dot)은 우한에서 방콕, 서울, 타이베이까지의 코로나19 경로를 정확하게 예측하기 위해 항공권 발권 및 비행경로를 분석하는 데 도움을 준다. 마찬가지로 AI 지원 시스템은 의사가 환자가 응급실에 들어갈 때 질병의 확산을 감지하고 신속한 진단을 통해 효과적인 격리 및 격리 절차를 가능하게 하는 데 도움을 줄 수 있습니다.

  • 전체 비용 절감

AI는 특정 프로세스를 수행하는 데 소요되는 시간과 프로세스 비용을 크게 줄이는 데 도움이 됩니다. 예를 들어 AI는 질병의 징후를 탐지하기 위해 수백만 장의 이미지를 분석할 수 있습니다. 이는 비용이 많이 드는 수동 작업을 제거합니다. 환자는 신속하고 효과적으로 치료를 받을 수 있어 입원 감소, 대기 시간, 침대 필요 등 여러 가지 이점을 누릴 수 있습니다.

최근 연구에서는 AI 자동화를 통해 다음과 같은 여러 영역에서 상당한 비용 절감이 가능하다고 예측했습니다.

  • 복용량 오류 감소 – 160억 달러
  • 로봇 보조 수술 – 400억 달러
  • 행정 업무 흐름 지원 – 180억 달러
  • 가상 간호 보조원 – 200억 달러
  • 사기 탐지 – 170억 달러

우리 DBMR 팀은 최소 침습 의료 로봇, 이미징 및 시각화 시스템 및 수술 도구 시장을 조사한 결과 2028년까지 시장 규모가 912억 2천만 달러에 달하고 위에서 언급한 예측 기간 동안 연평균 성장률(CAGR) 8.6%로 성장할 것임을 확인했습니다. 북미 지역은 사고 발생률이 높고 노인 인구가 많기 때문에 최소 침습 의료 로봇, 영상 및 시각화 시스템, 수술 도구 시장을 주도하고 있습니다. 아시아 태평양 지역은 교통사고, 일본과 중국의 노인 인구 증가로 인해 2021년부터 2028년까지 예측 기간 동안 상당한 성장률로 확장될 것으로 예상되며, 신흥 경제는 이 특정 지역에서 MIS 절차의 출현을 촉진할 것으로 예상됩니다. .

연구에 대해 더 자세히 알아보려면 다음 사이트를 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-minimally-breaker-medical-robotics-imaging-visualization-systems-surgical-instruments-market

헬스케어 분야로의 AI

의약품 개발에 AI가 크게 참여함으로써 합리적인 의약품 설계가 가능해졌습니다. 의사 결정에 도움; 맞춤형 의약품을 포함하여 환자에게 적합한 치료법을 이해합니다. 향후 신약 개발을 위해 생성 및 활용되는 임상 데이터를 관리합니다. 예를 들어 E-VAI는 Eularis가 개발한 분석 및 의사 결정 AI 플랫폼으로, 기계 학습 알고리즘을 사용하여 경쟁사, 주요 이해관계자 및 현재 시장 점유율을 기반으로 분석 로드맵을 생성하여 매출의 주요 동인을 예측합니다. 이는 마케팅 경영진이 시장 점유율을 최대한 높이기 위해 자원을 할당하는 데 도움이 되고 어디에 투자할지 예측할 수 있게 해줍니다.

AI는 신약 개발에 중요한 역할을 하고 있습니다. AI는 히트 및 리드 화합물을 인식하고, 단시간 내에 약물 표적에 대한 보다 빠른 검증을 제공하며, 약물 구조 설계를 최적화할 수 있습니다. 이는 약물 발견의 다양한 측면에서 폭넓게 적용됩니다. 아래에 설명되어 있습니다.

Pharmaceutical Market of AI at a Glance

AI가 직면한 이점에도 불구하고 데이터 규모, 성장, 다양성, 불확실성과 같은 몇 가지 중요한 데이터 과제가 있습니다. 다양한 제약 회사에서 약물 개발에 사용할 수 있는 데이터 세트에는 수백만 개의 화합물과 이러한 문제를 처리할 수 없는 기존 ML 도구가 포함될 수 있습니다.

예를 들어, QSAR(정량적 구조-활성 관계) 기반 계산 모델은 많은 수의 화합물이나 log P 또는 log D와 같은 간단한 물리화학적 매개변수를 짧은 시간 내에 예측할 수 있습니다. 또한 QSAR 기반 모델은 훈련 세트의 실험 데이터 오류, 작은 훈련 세트, 실험 검증 부족과 같은 심각한 문제에 직면해 있습니다.

수많은 in silico 방법과 가상 화학 공간의 가상 스크린 화합물이 도입되었습니다. 이는 구조 및 리간드 기반 접근 방식과 결합하여 더 나은 프로파일 분석, 비납 화합물의 빠른 제거 및 약물 분자 선택을 제공합니다. 지출 감소. 쿨롱 행렬 및 분자 지문 인식과 같은 약물 설계 알고리즘은 납 화합물을 선택하는 데 도움이 되는 물리적, 화학적, 독성학적 프로필을 고려합니다.

우리 DBMR 팀은 인실리코 약물 발견 시장을 조사했으며, 급속한 기술 발전, 강력한 벤더의 존재, 다양한 만성 및 질병으로 고통받는 대규모 환자 집단의 존재로 인해 북미 지역이 인실리코 약물 발견 시장을 주도하고 있음을 목격했습니다. 전염병. 아시아 태평양 지역은 암과 당뇨병에 대한 학자 수의 증가와 광범위한 연구로 인해 상당한 성장률로 확장될 것으로 예상됩니다. 또한 바이오마커 식별 분야의 고성장세 증가와 재입원율 및 의료사고 감소에 대한 관심도 글로벌 시장 성장에 기여할 것으로 기대된다.

연구에 대해 더 자세히 알아보려면 다음 사이트를 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-in-silico-drug-discovery-market

신약 발견에 사용되는 AI 도구 목록

다양한 AI 도구가 신약 개발에 널리 사용됩니다. LimTox, admetSAR, Toxtree 및 pkCSM과 같은 여러 웹 기반 도구를 사용하여 다양한 분석 비용을 절감할 수 있습니다. 고급 AI 기반 접근 방식은 대부분 화합물의 유사성을 찾거나 입력 특성을 기반으로 화합물의 독성을 예측합니다. 또 다른 도구로는 eToxPred가 있는데, 이는 화합물의 독성과 많은 작은 유기 분자의 합성 타당성을 평가하는 데 도움이 되며 정확도는 72%에 달합니다. 화합물의 독성을 예측하는 데 도움이 되는 다른 도구도 많이 있습니다. FDA 승인 약물 중 일부에는 가능한 한 빨리 예측해야 하는 심각한 부작용이 있는 경우가 많습니다. 이와 관련하여 이러한 AI 도구가 사용됩니다. AI 도구는 다양한 세트로 구성되어 있지만 여기서는 다음과 같은 도구 중 일부를 언급합니다.

Pharmaceutical Market of AI at a Glance

AI 의약품 시장을 한눈에

많은 제약회사는 실험과 관련된 재정적 비용과 실패 가능성을 줄이기 위해 AI로 전환하고 있습니다. AI 시장은 2015년 2억 달러에서 2018년 7억 달러로 성장했으며, 2024년에는 최대 50억 달러에 이를 것으로 예상된다. AI는 제약 및 의료 분야에 혁명을 일으킬 것으로 예상되며, 그 비중은 40%에 달할 것으로 예상된다. 2017년부터 2024년까지의 성장. 많은 제약 회사가 대규모 투자를 했으며 인공 지능에 계속 투자하고 있으며 여러 AI 회사와 협력하여 필수 의료 도구를 개발했습니다. 예를 들어, Google의 자회사인 DeepMind Technologies와 Royal Free London NHS Foundation Trust의 협력이 있어 급성 신장 손상을 지원하는 데 사용되었습니다. 또 다른 예는 희귀 신경 질환 치료법을 찾기 위해 협력한 Boehringer Ingelheim과 HealX입니다. Eli Lilly and Company와 Atomwise는 새로운 단백질 표적에 대한 약물을 개발하기 위해 협력했습니다. 목록에 있는 또 다른 회사는 말기 흑색종, 췌장암 및 신경교종 치료에 도움을 준 Mateon Therapeutics와 PointR Data의 협력입니다. F. Hoffmann-La Roche와 Owkin은 기계 학습 알고리즘을 기반으로 많은 임상 시험을 수행했습니다.

AI 기반 고급 애플리케이션

  • 약물 전달을 위한 AI 기반 나노로봇

나노로봇은 주로 집적회로, 센서, 전원 공급 장치, 안전한 데이터 백업으로 구성되며 AI와 같은 컴퓨팅 기술을 통해 유지됩니다. 충돌 방지, 표적 식별, 감지 및 부착, 최종적으로 신체에서 배설되도록 프로그래밍되어 있습니다. 나노/마이크로로봇의 최신 발전을 통해 pH와 같은 생리학적 조건을 기반으로 목표 부위로 이동할 수 있어 효능이 향상되고 전신 부작용을 줄일 수 있습니다.

용량 조정, 서방성, 방출 제어, 약물의 적절한 전달을 위해 제어해야 하는 약물 방출 등 많은 매개변수를 고려해야 합니다. 마이크로칩 임플란트는 프로그래밍된 임플란트 방출뿐만 아니라 신체 내 임플란트의 적절한 위치를 감지하는 데 사용됩니다.

우리 DBMR팀은 나노로봇 시장을 조사한 결과, 나노로봇 기술 채택의 증가로 인해 북미가 나노로봇 시장을 장악하고 있음을 목격했습니다. 또한, 정교한 의료 인프라의 존재는 예측 기간 동안 해당 지역의 나노로봇 시장 성장을 더욱 촉진할 것입니다. 현미경의 응용 분야가 증가하고 현미경과 분광학의 통합은 향후 나노로봇 시장의 성장을 위한 잠재적인 기회를 제공할 것으로 추산됩니다.

연구에 대해 더 자세히 알아보려면 다음 사이트를 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-nanorobots-market

  • 나노의학에서의 AI 출현

나노기술의 활용은 확실히 증가하고 있다. 과학자들은 의학 분야에서 이 방법론에 점점 더 많이 의존하고 참여하고 있습니다. 나노의학은 HIV, 암, 말라리아, 천식 및 다양한 염증성 질환과 같은 많은 복잡한 질병을 진단하고 치료하는 데 사용됩니다. 최근 몇 년 동안 나노입자를 변형한 약물 전달은 향상된 효능과 치료법으로 인해 치료 및 진단 분야에서 필요하게 되었습니다. 나노기술과 AI를 접목하면 제형 개발에 있어 많은 문제를 해결할 수 있다. 예를 들어, AI는 실리카솜의 준비를 지원했습니다. 실리카솜은 종양 침투 펩타이드인 iRGD와 이리노테칸이 탑재된 다기능 메조다공성 실리카 나노입자의 조합입니다. iRGD가 실리카솜의 트랜스사이토시스 개선에 도움이 되면서 나노의학은 실리카솜의 흡수를 3~4배 증가시켰습니다.

  • 복합 약물 전달 및 시너지/길항 예측의 AI

환자의 빠른 회복을 위한 시너지 효과를 제공할 수 있기 때문에 결핵, 암과 같은 복잡한 질병을 치료하기 위해 여러 가지 새로운 약물 조합이 승인되고 시판되고 있습니다.. 이 조합을 위해 선택된 잠재적인 약물에는 상당한 수의 약물에 대한 높은 처리량 스크리닝이 필요하므로 프로세스가 지루해집니다. 예를 들어, 암 치료에는 6~7가지 약물을 조합하여 사용합니다. Rashidet al. 114개 FDA 승인 약물 모음을 통해 보르테조밉 내성 다발성 골수종 치료를 위한 최적의 병용 요법을 탐지하는 데 사용되는 2차 표현형 최적화 플랫폼 모델을 개발했습니다. 이 모델에 관련된 가장 좋은 두 가지 약물은 데시타빈(Dec)과 미토마이신 C(MitoC)입니다.

AI의 고급 적용 외에도 시장 포지셔닝에도 중요합니다. 기술과 전자상거래의 용이성으로 인해 모든 기업이 공개 플랫폼에서 브랜드를 홍보하는 것이 더 쉬워졌습니다. 가장 많이 사용되는 도구 중 하나는 대부분의 회사가 온라인 마케팅에서 고정 위치를 차지하고 시장에서 제품을 포지셔닝하는 데 사용하는 SEO입니다. 기업은 게임 내에서 자신의 위치를 ​​더 높은 위치로 관리하기 위해 끊임없이 노력하며, 짧은 시간 안에 브랜드를 인지시키려고 노력합니다.

우리 DBMR 팀은 전자상거래 포장 시장을 조사한 결과 아시아 태평양 지역이 시장 점유율과 수익 측면에서 전자상거래 포장 시장을 장악하고 있으며 예측 기간 동안 계속해서 우위를 점할 것이라는 점을 목격했습니다. 이는 인도, 중국, 일본 등 성장하는 국가에서 골판지 상자에 대한 소비자 선호도가 높아지기 때문입니다. , 중국은 아시아 태평양 시장을 주도하고 있습니다. 코로나19로 인해 시장 성장이 가속화됐다. 코로나19로 인해 사람과 물질의 이동이 제한됐다. 식료품, 의약품, 야채 및 기타 제품과 같은 필수 상품에 대한 수요가 증가했기 때문에 전자상거래는 팬데믹에서 중요한 역할을 했습니다.

연구에 대해 더 자세히 알아보려면 다음 사이트를 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-e-commerce-packaging-market

결론:

인공지능과 그 놀라운 도구의 발전으로 제약회사는 여러 측면에서 우위를 점하고 있습니다. 이는 제품의 전체 라이프사이클과 함께 약물 개발 프로세스에 영향을 미치며, 그 결과 스타트업 수의 증가를 쉽게 설명합니다. 의료 부문은 약물 및 치료법의 비용 증가 등 많은 과제에 직면해 있습니다. 사회는 이 분야에 중대한 변화가 필요하며, 이는 중요성이 부여되어야 합니다. 디지털 헬스 시대가 다가오고 AI 확산이 증가함에 따라 개별 환자의 요구에 따라 제조할 수 있는 원하는 복용량, 방출 매개 변수 및 기타 필수 측면을 갖춘 맞춤형 약물도 빛을 발하고 있습니다. AI 기반 기술은 제품이 시장에 출시되는 데 필요한 시간을 단축하는 데 도움이 될 뿐만 아니라 제품 개선과 생산 공정의 전반적인 안전에도 도움이 될 것입니다.

또한 비용 효율적이고 사용 가능한 리소스를 더 잘 활용할 수 있으므로 자동화의 중요성이 높아집니다. 이러한 측면 외에도 이러한 기술 구현과 관련된 가장 큰 우려 사항은 그에 따른 일자리 손실과 AI 운영에 필요한 엄격한 규정입니다. 그러나 이러한 시스템은 인간의 단순성을 장려하는 데 도움이 되지만 이를 완전히 대체하지는 않습니다. 많은 판매자는 표준 제품에 AI 구성 요소를 포함하거나 AIaaS(AI-as-a-Service) 플랫폼에 대한 액세스를 제공합니다. AI를 위한 하드웨어, 소프트웨어 및 인력 비용이 높아질 수 있습니다. AIaaS의 중요성은 개인과 기업이 여러 비즈니스 목적으로 AI를 실험할 수 있다는 것입니다. AI의 다양한 하위 분야, 즉 머신러닝, 신경망, 딥러닝도 신약 발견에 똑같이 도움이 됩니다. 이 외에도 컴퓨터 비전, 사물 인터넷, 고급 알고리즘 및 그래픽 처리 장치와 같은 여러 다른 기술이 AI를 지원하고 활성화합니다.


고객 추천사