Articles

Dec, 19 2022

Transformation of Drug Discovery through Artificial Intelligence

Recently, the use of artificial intelligence (AI) is increasing at a fast pace. Almost in every field, the use of AI is increasing. With its adaptation, many things are becoming smoother. As the hype around AI has accelerated, big market players and merchants have been scrambling to promote how their products and services use AI. Artificial intelligence is the recreation of human intelligence processes by machines, mainly through computer systems. Usually, often what they refer to as AI is simply one component of AI, such as machine learning. AI requires a combination of hardware and software for writing and training machine learning algorithms. A few programming languages similar to AI, such as Python, R and Java, are popular.  

Our DBMR team has investigated the machine learning operationalization software market and witnessed that North America dominates the machine learning operationalization software market during the forecast period of 2022-2029 and will continue to flourish its trend of dominance during the forecast period due to the presence of major key players and increase in the number of technical innovations in this region. The market is expected to exhibit a CAGR of 44.7% for the forecast period of 2022-2029.

To know more about the study, kindly visit: https://www.databridgemarketresearch.com/reports/global-machine-learning-operationalization-software-market

History of AI

Although AI has become more prevalent recently due to increased data volumes, advanced algorithms, and computing power and storage improvements, the term was introduced in 1956. At that point in time, they explored subjects such as problem-solving and symbolic methods. In the 1960s, the US Department of Defense took a genuine interest in this field and began training computers to mimic basic human reasoning. For instance, the Defense Advanced Research Projects Agency (DARPA) finished the street mapping projects in the 1970s. This early work built the path for the automation and formal reasoning visible in computers today, including decision support systems and smart search systems designed to complement and enhance human abilities.

How AI is Changing Our World

AI is blessing our lives with significant advantages such as online search recommendations, chatbots, voice-assistants, and much more. With each passing day, it is becoming an integral part of our lives. AI will have tremendous benefits in the future as it will lead to higher production rates and higher productivity in varied sectors. In the present time and also in the near future, automation powered by artificial intelligence is time-consuming. Hours of manual work can be automated. It is applicable everywhere. It can be used everywhere, predicting traffic or weather conditions. The use of automation in AI is one of the major boons amongst the others.

Advantages of Artificial Intelligence

AI의 제약 시장 개요

  • Reduction in Human Error

Artificial intelligence is beneficial in reducing the so-called "Human error." Humans are bound to make mistakes, but that is not the case with computer systems. Computers do not make these mistakes if they are correctly programmed. AI is performed beneficially by applying previously gathered information through a certain set of algorithms. Hence, errors are minimized in this regard, and the possibility of a higher degree of precision becomes higher.

  • Takes Risks Instead of Humans

One can overcome several risky restrictions of humans with the help of an AI robot which in turn can do the difficult things for us, and this is one of the most significant advantages of artificial intelligence.

For instance, if we go back and remember the Chernobyl nuclear power plant explosion in Ukraine, there were no AI-powered robots at that time that could help us to minimize the effect of radiation in that situation; AI robots could have been a savior to the massive crowd by minimizing the fire. AI robots can be used in such cases where intervention can be hazardous.

  • Full Availability

If we keep the breaks aside, an average human will work approximately 4–6 hours daily. Working all day long gets difficult and impossible for humans. Maintaining the work-life balance, handling personal responsibilities, and the tedious work pressure is hard. Sometimes some work is essential and needs to be finished in a particular timeline, but it is sometimes impossible. Using AI, we can make machines work 24x7 without any breaks, and they don't even get bored, unlike humans.

  • Assists Research

AI enables researchers to surpass the large volume of data from various sources. With real-time data, research can benefit from the wide body of information available, as long as it's easily translated. Medical research institutes such as the Childhood Cancer Data Lab are developing useful software for healthcare professionals to better steer wide data collections. AI has also been used widely to assess and detect symptoms to prevent the disease progression. Telehealth solutions are being executed to track patient progress, recover vital diagnosis data and aid in population information to shared networks.

  • Reduce Physician Stress

According to some latest research reports, more than half of primary physicians feel stressed from deadline pressures and other workplace factors. AI aids in streamlining procedures, automating functions, instantly sharing data and organizing operations, which generally helps physicians avoid juggling things. However, AI can assist with more time-intensive operations, explaining diagnoses, for instance, medical professionals may experience some stress alleviation."

  • Safer Surgeries

외과의는 개복 수술이 필요할 수 있는 좁은 공간에서 수술할 수 있는 숙련도를 향상시킵니다. AI는 이러한 측면에서 의료 로봇 분야에서 수술의 적절한 필요성에 기여하며 적절한 위치를 찾아냅니다. 로봇은 민감한 장기와 조직 주변에서 더욱 정확하게 수술하고, 감염 위험과 수술 후 통증을 줄이며, 출혈을 줄일 수 있습니다. 로봇 수술은 절개 부위가 작아 흉터가 적고 회복 시간이 단축되는 등 더 많은 장점을 가지고 있습니다. 예를 들어, 네덜란드 마스트리흐트 대학교 의료센터는 2017년 AI 지원 로봇을 사용하여 0.03mm보다 큰 작은 혈관을 봉합했습니다. 로봇은 외과의가 다루고 관리하며, 외과의의 손 움직임은 로봇 손을 통해 정밀한 동작으로 변환됩니다.

저희 DBMT 팀은 부인과 로봇 수술 시장을 조사한 결과, 북미 지역 인구의 최소 침습 수술 수요 증가로 인해 부인과 로봇 수술 시장이 북미 지역을 주도하고 있음을 확인했습니다. 아시아 태평양 지역은 여성 건강 및 의료비 지출에 대한 인식이 높아짐에 따라 예측 기간 동안 상당한 성장을 보일 것으로 예상됩니다. 부인과 로봇 수술 시장의 주요 기업으로는 BOWA-electronic GmbH & Co. KG, Prima Medical, XCELLANCE Medical Technologies, ATMOS MedizinTechnik GmbH & Co. KG, Ethicon US, LLC., Johnson & Johnson Services, Inc., Parkell, Inc. 등이 있습니다.

해당 연구에 대한 자세한 내용을 알아보려면 https://www.databridgemarketresearch.com/reports/global-gynecology-robotic-surgery-market을 방문하세요.

  • 예방 관리 강화

AI와 머신러닝은 감염병 예방 및 관리에 도움을 줍니다. 발병 정보 플랫폼인 블루닷(Blue Dot)은 항공권 발권 및 비행 경로를 분석하여 우한에서 방콕, 서울, 타이베이까지 COVID-19의 이동 경로를 정확하게 예측하는 데 도움을 줍니다. 마찬가지로, AI 기반 시스템은 환자가 응급실에 입원했을 때 신속한 진단을 통해 질병 확산을 감지하고 효과적인 격리 및 격리 절차를 시행할 수 있도록 의사를 도울 수 있습니다.

  • 전체 비용 절감

AI는 특정 프로세스 수행에 소요되는 시간과 비용을 크게 줄이는 데 도움이 됩니다. 예를 들어, AI는 수백만 장의 이미지를 분석하여 질병 징후를 감지할 수 있습니다. 비용이 많이 드는 수작업을 없애줍니다. 환자는 더욱 빠르고 효과적으로 치료받을 수 있으며, 입원, 대기 시간, 병상 부족 등 여러 가지 이점을 누릴 수 있습니다.

최근 연구에 따르면 AI 자동화를 통해 다음과 같은 여러 분야에서 상당한 비용 절감 효과가 예상됩니다.

  • 복용량 오류 감소 – 160억 달러
  • 로봇 보조 수술 – 400억 달러
  • 행정 워크플로 지원 – 180억 달러
  • 가상 간호 조수 – 200억 달러
  • 사기 감지 – 170억 달러

DBMR 팀은 최소 침습 의료 로봇, 영상 및 시각화 시스템, 그리고 수술 도구 시장을 조사하여 2028년까지 시장 규모가 912억 2천만 달러에 달하고, 앞서 언급한 예측 기간 동안 연평균 성장률 8.6%로 성장할 것으로 전망했습니다. 북미 지역은 높은 사고 부상률과 높은 고령 인구로 인해 최소 침습 의료 로봇, 영상 및 시각화 시스템, 그리고 수술 도구 시장을 선도하고 있습니다. 아시아 태평양 지역은 교통사고 증가, 일본과 중국의 고령 인구 증가, 그리고 신흥 경제국들의 영향으로 2021년부터 2028년까지 예측 기간 동안 높은 성장률을 기록할 것으로 예상됩니다. 이러한 성장세는 아시아 태평양 지역에서 MIS 시술의 도입을 촉진할 것으로 예상됩니다.

해당 연구에 대한 자세한 내용을 알아보려면 https://www.databridgemarketresearch.com/reports/global-minimally-invasive-medical-robotics-imaging-visualization-systems-surgical-instruments-market을 방문하세요. 

AI를 활용한 헬스케어 분야

AI는 의약품 개발에 있어 중요한 역할을 하며, 합리적인 약물 설계, 의사 결정 지원, 환자 맞춤형 의약품을 포함한 적절한 치료법 이해, 그리고 향후 약물 개발에 사용되는 임상 데이터 관리를 가능하게 합니다. 예를 들어, Eularis에서 개발한 분석 및 의사 결정 AI 플랫폼인 E-VAI는 머신러닝 알고리즘을 사용하여 경쟁사, 주요 이해관계자, 그리고 현재 시장 점유율을 기반으로 분석 로드맵을 생성하고, 의약품 판매의 주요 동인을 예측합니다. 이를 통해 마케팅 담당자는 시장 점유율을 극대화하기 위한 자원을 할당하고 투자 대상을 예측할 수 있습니다.

AI는 신약 개발에 중요한 역할을 합니다. AI는 히트 화합물과 리드 화합물을 인식하고, 단시간 내에 약물 표적을 빠르게 검증하며, 약물 구조 설계를 최적화할 수 있습니다. AI는 신약 개발의 다양한 측면에서 광범위하게 활용되고 있습니다. 아래에서 자세히 설명합니다.

AI의 제약 시장 개요

AI가 가진 장점에도 불구하고, 데이터의 규모, 성장, 다양성, 불확실성 등 심각한 데이터 관련 과제를 안고 있습니다. 다양한 제약 회사의 신약 개발에 활용 가능한 데이터 세트에는 수백만 개의 화합물이 포함되어 있으며, 기존 머신러닝 도구로는 이러한 문제를 해결할 수 없습니다.

예를 들어, 정량적 구조-활성 관계(QSAR) 기반 계산 모델은 단시간 내에 많은 수의 화합물이나 log P 또는 log D와 같은 간단한 물리화학적 매개변수를 예측할 수 있습니다. 또한, QSAR 기반 모델은 훈련 세트의 실험 데이터 오류, 훈련 세트의 부족, 그리고 실험 검증의 부족과 같은 심각한 문제에 직면합니다.

다양한 인실리코(in silico) 방법과 가상 화학 공간에서의 가상 스크린 화합물이 도입되었으며, 이는 구조 및 리간드 기반 접근법과 결합되어 더 나은 프로파일 분석, 비납 화합물의 빠른 제거, 그리고 더 적은 비용으로 약물 분자 선택을 제공합니다. 쿨롱 행렬 및 분자 지문 인식과 같은 약물 설계 알고리즘은 물리적, 화학적, 독성학적 프로파일을 고려하여 선도 화합물을 선택하는 데 도움을 줍니다.

DBMR 팀은 인실리코 신약 개발 시장을 조사한 결과, 북미 지역이 빠른 기술 발전, 강력한 벤더들의 강력한 입지, 그리고 다양한 만성 질환 및 감염성 질환을 앓고 있는 많은 환자층을 바탕으로 인실리코 신약 개발 시장을 선도하고 있음을 확인했습니다. 아시아 태평양 지역은 암과 당뇨병 분야의 학계 참여 증가와 광범위한 연구로 인해 높은 성장률을 기록할 것으로 예상됩니다. 또한, 바이오마커 식별 분야의 높은 성장률과 재입원율 및 의료 오류 감소에 대한 집중 또한 글로벌 시장 성장에 기여할 것으로 예상됩니다.

해당 연구에 대한 자세한 내용을 알아보려면  https://www.databridgemarketresearch.com/reports/global-in-silico-drug-discovery-market을 방문하세요.

약물 발견에 사용되는 AI 도구 목록

다양한 AI 도구가 신약 개발에 널리 사용됩니다. LimTox, admetSAR, Toxtree, pkCSM과 같은 웹 기반 도구는 다양한 분석법의 비용을 절감하는 데 도움이 됩니다. 고급 AI 기반 접근법은 주로 화합물의 유사성을 찾거나 입력 특성을 기반으로 화합물의 독성을 예측합니다. 이러한 도구의 또 다른 예로 eToxPred가 있습니다. 이 도구는 화합물의 독성과 다양한 저분자 유기 분자의 합성 가능성을 추정하는 데 도움이 되며, 정확도는 최대 72%에 달합니다. 화합물의 독성 예측에 도움이 되는 다른 도구들도 많이 있습니다. FDA 승인 약물 중 일부는 심각한 부작용을 유발하여 가능한 한 빨리 예측해야 하는 경우가 많으며, 이러한 AI 도구는 이러한 측면에서 사용됩니다. AI 도구는 매우 다양하지만, 여기서는 몇 가지 도구를 소개합니다.

AI의 제약 시장 개요

AI의 제약 시장 개요

많은 제약 회사가 실험과 관련된 재정적 비용과 실패 가능성을 줄이기 위해 AI로 전환하고 있습니다. AI 시장은 2015년 2억 달러에서 2018년 7억 달러로 증가했으며 2024년까지 최대 50억 달러에 이를 것으로 예상됩니다. AI는 제약 및 의료 분야에 혁명을 일으킬 것으로 예상되며 2017년부터 2024년까지 40% 성장할 것으로 예상됩니다. 많은 제약 회사가 막대한 투자를 했고 인공 지능에 계속 투자하고 있으며 여러 AI 회사와 협력하여 필수 의료 도구를 개발하고 있습니다. 예를 들어 Google의 자회사인 DeepMind Technologies와 Royal Free London NHS Foundation Trust의 협업이 있었는데, 이는 급성 신장 손상 치료에 사용되었습니다. 또 다른 예로 Boehringer Ingelheim과 HealX는 희귀 신경 질환에 대한 치료법을 찾기 위해 협력했습니다. Eli Lilly and Company와 Atomwise는 새로운 단백질 표적에 대한 약물을 개발하기 위해 협력했습니다. 목록에 오른 또 다른 사례는 Mateon Therapeutics와 PointR Data의 협력으로, 말기 흑색종, 췌장암, 신경교종 치료에 도움을 주었습니다. F. Hoffmann-La Roche와 Owkin은 머신러닝 알고리즘을 기반으로 많은 임상 시험을 수행했습니다.

AI 기반 고급 애플리케이션

  • 약물 전달을 위한 AI 기반 나노로봇

나노로봇은 주로 집적 회로, 센서, 전원 공급 장치, 그리고 AI와 같은 계산 기술을 통해 유지되는 안전한 데이터 백업으로 구성됩니다. 나노로봇은 충돌 회피, 표적 식별, 감지 및 부착, 그리고 최종적으로 체내에서 배출되도록 프로그램됩니다. 나노/마이크로로봇의 최신 기술은 pH와 같은 생리적 조건에 따라 표적 부위로 이동하여 효능을 향상시키고 전신 부작용을 줄일 수 있도록 합니다.

용량 조절, 지속 방출, 제어 방출, 그리고 약물의 적절한 전달을 위해 제어되어야 하는 약물 방출 등 여러 가지 요소를 고려해야 합니다. 마이크로칩 이식은 이식체의 프로그램 방출과 체내 이식체의 적절한 위치를 감지하는 데 사용됩니다.

DBMR 팀은 나노로봇 시장을 조사한 결과, 나노로봇 기술 도입 증가로 북미 지역이 나노로봇 시장을 주도하고 있음을 확인했습니다. 더욱이, 최첨단 의료 인프라의 존재는 예측 기간 동안 이 지역의 나노로봇 시장 성장을 더욱 가속화할 것입니다. 현미경의 응용 분야 확대와 분광학에 현미경을 접목하는 추세는 향후 나노로봇 시장 성장에 잠재적 기회를 제공할 것으로 예상됩니다.

해당 연구에 대한 자세한 내용을 알아보려면  https://www.databridgemarketresearch.com/reports/global-nanorobots-market을 방문하세요.

  • 나노의학 분야의 AI 등장

나노 기술의 활용은 확실히 증가하고 있습니다. 과학자들은 의학 분야에서 이 방법론에 의존하고 점점 더 많이 활용하고 있습니다. 나노 의약품은 HIV, 암, 말라리아, 천식, 그리고 다양한 염증성 질환과 같은 여러 복잡한 질병을 진단하고 치료하는 데 사용됩니다. 최근 나노입자로 변형된 약물 전달은 효능과 치료 효과 향상으로 인해 치료 및 진단 분야에서 필수적이 되었습니다. 나노 기술을 AI와 결합하면 제형 개발 과정에서 발생하는 여러 문제를 해결할 수 있습니다. 예를 들어, AI는 실리카좀(silicasome) 제조에 도움을 줄 수 있습니다. 실리카좀은 종양 투과 펩타이드인 iRGD와 이리노테칸이 함유된 다기능 메조포러스 실리카 나노입자의 조합입니다. 나노 의약품은 iRGD가 실리카좀의 세포 통과 작용을 개선하는 데 도움을 주기 때문에 실리카좀의 흡수를 3~4배 증가시켰습니다.

  • 약물 전달 및 상승작용/길항작용 예측의 AI

결핵이나 암과 같은 복잡한 질병을 치료하기 위해 여러 가지 새로운 약물 조합이 승인되어 시판되고 있습니다. 이는 환자의 빠른 회복을 위한 시너지 효과를 제공할 수 있기 때문입니다 . 이러한 조합에 선택된 잠재적 약물은 상당수의 약물에 대한 고처리량 스크리닝을 필요로 하므로 프로세스가 까다롭습니다. 예를 들어, 암 치료에는 6~7가지 약물의 조합이 포함됩니다. Rashid 등은 114가지 FDA 승인 약물을 수집하여 보르테조밉 내성 다발성 골수종을 치료하기 위한 최적의 조합 요법을 찾는 데 사용되는 이차 표현형 최적화 플랫폼 모델을 개발했습니다. 이 모델에 포함된 가장 효과적인 두 가지 약물은 데시타빈(Dec)과 미토마이신 C(MitoC)입니다.

AI는 첨단 기술 활용 외에도 시장 포지셔닝에도 중요한 역할을 합니다. 기술과 전자상거래의 편리성으로 인해 모든 기업이 대중 플랫폼에서 브랜드를 홍보하는 것이 더욱 쉬워졌습니다. 가장 많이 사용되는 도구 중 하나는 SEO인데, 대부분의 기업은 온라인 마케팅에서 확고한 입지를 확보하고 시장에서 제품의 입지를 강화하는 데 SEO를 활용합니다. 기업들은 끊임없이 시장에서 더 높은 순위를 유지하며, 짧은 시간 안에 브랜드 인지도를 높이기 위해 노력합니다.

DBMR 팀은 전자상거래 포장 시장을 조사한 결과, 아시아 태평양 지역이 시장 점유율과 매출 측면에서 전자상거래 포장 시장을 주도하고 있으며, 예측 기간 동안 그 우위를 더욱 확대할 것으로 예상했습니다. 이는 인도, 중국, 일본과 같은 성장 국가에서 골판지 상자에 대한 소비자 선호도가 높아지고 있기 때문입니다. 특히 중국은 아시아 태평양 시장을 선도하고 있습니다. 코로나19는 시장 성장을 가속화했습니다. 코로나19로 인해 사람과 물자의 이동이 제한되었습니다. 전자상거래는 식료품, 의약품, 채소 등 필수품에 대한 수요가 증가함에 따라 팬데믹 상황에서 중요한 역할을 했습니다.

해당 연구에 대한 자세한 내용을 알아보려면  https://www.databridgemarketresearch.com/reports/global-e-commerce-packaging-market을 방문하세요.

결론:

인공지능과 그 놀라운 도구의 발전으로 제약 회사들은 여러 측면에서 유리해지고 있습니다. 이는 약물 개발 과정과 제품의 전체 수명 주기에 영향을 미치며, 이는 스타트업의 증가를 쉽게 설명해줍니다. 의료 분야는 약물 및 치료 비용 증가와 같은 많은 어려움에 직면해 있습니다. 사회는 이 분야에서 중요한 변화를 필요로 하며, 이는 반드시 중요성을 가져야 합니다. 디지털 헬스 시대가 도래하고 AI의 보급이 확대됨에 따라, 환자 개개인의 필요에 맞춰 원하는 용량, 방출 매개변수 및 기타 필요한 요소들을 제조할 수 있는 개인 맞춤형 약물 또한 주목받고 있습니다. AI 기반 기술은 제품 출시 기간을 단축할 뿐만 아니라, 제품 품질 향상 및 생산 공정의 전반적인 안전성 향상에도 기여할 것입니다.

더욱이, 비용 효율적이고 가용한 자원의 활용도를 높여 자동화의 중요성을 더욱 높일 것입니다. 이러한 측면 외에도, 이러한 기술 구현과 관련된 가장 큰 우려는 이로 인한 일자리 감소와 AI 운영에 필요한 엄격한 규제입니다. 그러나 이러한 시스템은 인간의 단순성을 장려하는 데 도움이 될 뿐, 인간을 완전히 대체하지는 않습니다. 많은 판매자가 표준 제품에 AI 구성 요소를 포함하거나 AIaaS(AI-as-a-service) 플랫폼에 대한 액세스를 제공합니다. AI에 필요한 하드웨어, 소프트웨어 및 인력 비용은 상당히 높아질 수 있습니다. AIaaS의 중요성은 개인과 기업이 다양한 비즈니스 목적으로 AI를 실험할 수 있도록 지원한다는 것입니다. 머신러닝, 신경망, 딥러닝과 같은 다양한 AI 하위 분야는 신약 개발에도 마찬가지로 유용합니다. 이 외에도 컴퓨터 비전, 사물 인터넷, 고급 알고리즘, 그래픽 처리 장치와 같은 여러 기술이 AI를 지원하고 활성화합니다.


Client Testimonials