데이터를 사용하여 행동 과정을 결정하거나 예측을 하는 알고리즘 또는 컴퓨터 프로그램을 인공 지능이라고 합니다. 컴퓨터가 데이터를 조사하고 판단을 내리기 위해 과학자들은 컴퓨터가 따라야 할 일련의 규칙이나 지침을 개발할 수 있습니다. 기계 학습은 시스템이 데이터를 평가하고 이해하는 방법을 자체적으로 훈련하는 또 다른 인공 지능 기술입니다. 결과적으로 기계 학습 알고리즘은 인간의 눈이나 뇌가 인식하기 어려운 패턴을 찾아낼 수 있습니다. 또한 이러한 알고리즘은 더 새로운 정보에 노출될수록 데이터를 학습하고 해석하는 능력이 향상됩니다.
Data Bridge Market Research는 헬스케어 시장의 인공 지능이 2022~2029년 예측 기간 동안 51.37%의 CAGR을 겪을 것으로 예상한다고 분석합니다. 이는 2021년 63억 5천만 달러였던 시장 가치가 2029년에는 1,752억 2천만 달러로 급증할 것임을 의미합니다. 2019년 1월 영국의 Dartford와 Gravesham NHS Trust는 퇴원 시 환자 모니터링을 위한 AI 기반 웨어러블 기술을 개발했습니다. 병원에서. 2019년 10월, care.ai와 NVIDIA는 NVIDIA 플랫폼을 활용하여 의료 분야에서 인공 지능 기반 자율 환자 모니터링을 제공하기 위한 협력을 발표했습니다.
연구에 대해 자세히 알아보려면 다음을 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-artificial-intelligence-in-healthcare-market
기계 학습의 하위 집합인 딥 러닝도 암 영상 응용 분야의 연구자에 의해 적용되었습니다. 딥러닝은 인간의 두뇌와 유사한 방식으로 데이터를 분류하는 알고리즘을 말합니다. 인공 신경망은 딥 러닝 기술에 사용되어 뇌 세포가 신체의 나머지 부분에서 보내는 메시지를 수신하고 해석하고 응답하는 방식을 시뮬레이션합니다. 덩어리가 암인지 아닌지 확인하기 위해 의사는 암 영상 검사를 실시합니다. 암인 경우 얼마나 빨리 진행됩니까? 퍼진 정도는 어느 정도인가요? 치료받고 회복됐나요? 연구에 따르면 AI는 의료 전문가의 대응의 신속성, 정확성, 신뢰성을 향상시킬 수 있습니다. 종양학에서의 AI 적용은 다양한 단계에서 이해될 수 있습니다.
그림 1: 종양학에서 AI의 역할
- 암을 조기에 발견- 사람들은 유방조영술 및 자궁 경부 세포진 검사와 같은 절차를 사용하여 암이나 암으로 발전할 수 있는 세포의 징후를 정기적으로 검사합니다. 목표는 암이 퍼지거나 자라기 전에 조기에 발견하고 치료하는 것입니다. 유방암 검진 테스트 및 기타 유형의 암 검진 테스트를 돕기 위해 과학자들은 AI 기술을 만들었습니다. 지난 20년 동안 AI 기반 컴퓨터 알고리즘은 의사가 유방 조영술을 해독하는 데 도움을 주었지만 연구 분야는 빠르게 발전하고 있습니다. 한 팀은 여성의 유방암 검사 빈도를 결정하는 데 도움을 주기 위해 AI 시스템을 개발했습니다. 이 알고리즘은 유방조영술 결과를 토대로 개인이 향후 5년 내에 유방암에 걸릴 가능성을 예측합니다. 이 모델은 현재의 유방암 위험 예측 방법보다 테스트에서 더 나은 성능을 보였습니다. 제거하거나 치료해야 하는 자궁경부 전암을 인식할 수 있는 딥러닝 알고리즘이 국립암연구소 연구원에 의해 개발 및 테스트되었습니다. 일부 자원이 부족한 상황의 의료 전문가는 자궁 경부 전암을 확인하기 위해 작은 카메라로 자궁 경부를 검사합니다. 이 접근 방식은 간단하고 지속 가능합니다. 그러나 이는 매우 정확하거나 신뢰할 수는 없습니다. 대장암으로 이어질 수 있는 전암성 성장인 선종의 진단을 개선하기 위한 여러 AI 기술이 임상 연구에서 입증되었습니다. 일부 전문가들은 선종의 일부만이 암으로 발전하기 때문에 이러한 AI 기술로 인해 많은 사람들이 불필요한 치료와 추가 검사를 받아야 할 수 있다고 우려하고 있습니다.
- 암 발견 및 진단- AI는 이미 징후를 보이는 사람들의 암을 조기에 진단하는 데 도움을 줄 수 있는 능력을 갖추고 있습니다. 예를 들어 NCI 암 연구 센터의 Turkbey 박사와 동료들이 만든 AI 모델을 사용하면 방사선 전문의가 다중 매개 변수 MRI로 알려진 비교적 새로운 유형의 전립선 MRI 스캔에서 공격적일 수 있는 전립선암을 더 쉽게 식별할 수 있습니다. Turkbey 박사에 따르면 NCI 팀이 개발한 AI 모델은 "오류율을 최소화하고 방사선 전문의의 학습 곡선을 더 쉽게 만들 수 있습니다"라고 합니다. 그는 AI 모델이 다중 매개변수 MRI 사용법을 배우는 경험이 부족한 방사선 전문의에게 "가상 전문가" 역할을 할 수 있다고 말했습니다. 임상의가 CT 스캔에서 폐암을 발견하는 데 도움을 주기 위해 많은 딥 러닝 AI 모델이 개발되었습니다. 폐의 일부 비암성 이상은 CT 스캔에서 암과 매우 유사해 보일 수 있기 때문에 실제로는 그렇지 않은 사람이 폐암에 걸렸음을 나타내는 위양성 검사 결과의 상당 부분이 있습니다. 이론적으로 AI는 CT 이미지의 비암성 변경과 폐암을 더 잘 구별함으로써 위양성 발생률을 줄이고 일부 환자의 불필요한 스트레스, 후속 검사 및 수술을 피할 수 있습니다. 연구진은 폐암을 발견하고 암과 유사한 다른 변화를 피하기 위해 딥러닝 알고리즘을 만들었습니다.
- 암치료선택- 의사들은 또한 영상 검사를 사용하여 암의 진행 속도, 확산 여부, 치료 후 재발 가능성 등 암에 대한 중요한 데이터를 수집합니다. 의사는 이 정보를 사용하여 환자의 최선의 조치를 결정할 수 있습니다. 수많은 연구에 따르면 AI는 현재 인간보다 영상 스캔에서 예측 데이터를 더 정확하고 포괄적으로 추출할 수 있습니다. 예를 들어, Harmon 박사와 동료들이 개발한 딥 러닝 모델은 방광암 환자가 수술 외에 추가 치료가 필요할 위험을 예측할 수 있습니다. 의료 전문가에 따르면, 방광 근육에 종양(근육 침윤성 방광암)이 있는 사람의 약 50%에서 방광 밖으로 이동한 암세포 덩어리는 너무 작아서 기존 방법으로는 감지할 수 없습니다. 이러한 발견되지 않은 세포는 제거되지 않으면 수술 후에도 계속 증식하여 재발할 수 있습니다. 이러한 작은 클러스터는 화학 요법으로 제거하여 수술 후 암이 재발하는 것을 막을 수 있습니다. 그러나 임상시험에서 입증된 바와 같이 환자에게 화학요법도 필요한지 여부를 확인하는 것이 어려울 수 있다고 Harmon 박사는 말했습니다. 이 모델은 원래 종양 조직의 디지털 이미지를 분석하여 주변 림프절에 미세한 암성 그룹이 있는지 확인합니다. 2020년에 발표된 연구에서 딥러닝 모델은 환자의 연령과 특정 종양 특성을 포함한 여러 변수를 기반으로 방광암의 확산 여부를 예측하는 기존 방법보다 성능이 뛰어났습니다. 최선의 치료법을 결정하기 위해 점점 더 환자 암의 유전적 구성이 연구되고 있습니다. 중국 연구자들은 조직 사진을 통해 간암 조직에 중요한 유전자 돌연변이의 존재를 예측하는 딥러닝 알고리즘을 개발했는데, 이는 병리학자들이 이미지를 보는 것만으로는 달성할 수 없는 일입니다. 알고리즘을 만든 과학자들은 종양에 어떤 유전자 변화가 존재하는지 어떻게 결정하는지 모르기 때문에 그들의 도구를 놀라운 방식으로 작동하는 AI의 예로 만듭니다.
- 의료영상의 AI- 암 예측은 AI와 머신러닝의 이점을 활용할 수 있습니다. 인공지능은 이미 퍼진 악성 종양과 발병 위험이 높은 사람들을 미리 발견할 수 있습니다. 이를 통해 의료 전문가는 이러한 환자를 면밀히 모니터링하고 필요할 때 신속하게 조치를 취할 수 있습니다. Regina Barzilay라는 MIT의 컴퓨터 과학자는 암 예측을 위해 인공 지능(AI)을 테스트하는 데 관심이 있었습니다. MIT 팀은 명백한 증상이 나타나기 전에 유방암 위험이 있는 여성을 식별할 수 있는 가능성을 조사했습니다. 어떤 환자가 암에 걸렸는지 알아보기 위해 그녀는 4년 동안 40,000개 이상의 여성 유방촬영 사진(총 89,000개)을 수집하고 그 스캔 결과를 국가 종양 등록 기관과 비교했습니다. 그런 다음 Regina는 이러한 사진을 사용하여 일종의 AI인 기계 학습(ML) 알고리즘을 훈련한 다음 해당 알고리즘을 사용하여 예측을 생성했습니다. 알고리즘은 미래의 유방암 환자 중 30%를 고위험군에 속하는 것으로 정확하게 식별했습니다. AI는 의료 영상 분야에서 다양한 용도로 활용되고 있습니다. 악성 종양을 식별하고 분류하는 것은 가장 분명한 것 중 하나입니다. FDA는 2021년 9월에 AI 기반 암 병리학 도구인 Paige Prostate를 승인했습니다. FullFocus 디지털 병리학 뷰어와 함께 이 AI 도구는 전립선암 감지에 도움이 됩니다. FDA는 16명의 병리학자가 승인을 위한 전제 조건으로 암 지표를 찾기 위해 527장의 전립선 생검 사진을 평가한 임상 조사의 데이터를 검토했습니다.
- 혈액 검사의 AI- AI 강화를 통한 혈액 검사는 의사가 보다 정확하게 암을 발견하는 데 도움이 될 수 있습니다. Cancer Cell International의 연구에 따르면, AI 알고리즘을 사용해 혈장 ctDNA와 miRNA 프로파일을 분석하는 혈액 프로파일링은 기존 CT 스캔보다 암을 찾아 모니터링하는 데 더 효과적인 방법입니다. 존스홉킨스 킴멜 암센터 연구진이 혈액검사를 통해 폐암을 진단하는 최첨단 AI 기반 기술을 개발했다. 796명의 미국, 덴마크, 네덜란드 참가자의 혈액 샘플을 사용하여 이 방법을 테스트했습니다. 이 혈액 검사는 연구자들이 단백질 바이오마커, 임상 위험 요인, 환자의 CT 스캔과 결합했습니다. 그 결과, 초기 질병 단계에 있는 사람들의 91%와 진행성 암 단계에 있는 환자의 96%에서 암을 정확하게 식별했습니다.
- 면역치료에서의 AI- 면역치료에서 AI의 주요 기능은 다양한 치료법의 결과를 평가하고 의사가 처방을 수정하도록 돕는 것입니다. MD 앤더슨 암센터(MD Anderson Cancer Center)와 UT 사우스웨스턴 메디컬 센터(UT Southwestern Medical Center) 연구팀은 암세포의 게놈이 돌연변이될 때 생성되는 펩타이드인 신생항원이 환자의 면역 체계에 의해 인식되는지 여부를 확인하기 위해 AI 기반 방법을 개발했습니다. 이러한 AI 알고리즘을 사용하면 암세포가 면역요법에 어떻게 반응할지 예측할 수 있습니다. 우리 면역 체계의 T 세포는 항상 암과 기타 침입성 유기체의 징후를 감시하고 있습니다. 이들 세포는 신생항원을 식별할 때 서로 결합합니다. 그러나 일부 신생항원은 확인되지 않아 암 확산을 촉진합니다. 이 정보를 통해 면역요법에 대한 환자의 반응을 예측하고 개별화된 T 세포 기반 치료법과 암 백신을 만들 수 있습니다.
면역항암제(IO) 시장은 2022년부터 2029년까지 예측 기간 동안 8.90%의 시장 성장을 보일 것으로 예상됩니다. 면역항암제(IO) 시장은 유형, 표적, 적응증, 종료를 기준으로 분류됩니다. 사용자와 유통채널. 아시아 태평양 지역에서는 암 면역요법 채택에 있어 유리한 성장률이 증가하면서 상당한 성장이 관찰될 것으로 예상됩니다. 더욱이, 질병 발병률의 증가와 이에 따른 사망률의 증가는 향후 몇 년 동안 이 지역의 면역항암제(IO) 시장의 성장을 더욱 촉진할 것으로 예상됩니다.
연구에 대해 자세히 알아보려면 다음을 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-immuno-oncology-market
- 신약개발- 동일한 약이라도 다양한 형태의 암에 다르게 반응할 수 있습니다. AI는 다양한 약물이 악성 세포에 어떤 영향을 미칠지 예측할 수 있다. 이 정보는 새로운 항암제 개발과 사용 시기를 결정하는 데 도움이 됩니다. 예를 들어, 연구팀은 암세포의 돌연변이 상태에 따라 항암제의 작용을 예측할 수 있는 랜덤 포레스트 알고리즘을 만들었습니다.
종양학에서 AI의 이점
AI는 일반적으로 의료 분야에서 많은 이점을 가지고 있습니다. 암 탐지 및 치료에 인공지능을 사용하면 얻을 수 있는 세 가지 주요 이점은 다음과 같습니다.
그림 2: 종양학에서 AI의 이점
- 맞춤형 의학 및 치료법 - 빅데이터와 AI를 통해 의료진은 환자와 암세포에 대한 다양한 데이터를 분석해 개인별 맞춤 치료법을 개발할 수 있다. 이런 종류의 치료로 인한 부작용은 덜 심각합니다. 건강한 세포에는 해를 덜 끼치지만 암세포에는 더 큰 영향을 미칩니다. AI는 방사선 전문의가 어떤 종양과 이상이 암성이고 진정한 의학적 개입이 필요한지 판단하는 데 도움을 줍니다. 국립암연구소저널(Journal of the National Cancer Institute)에 실린 연구에 따르면, AI 알고리즘은 자궁 경부 사진에서 전암성 병변을 식별하고 이를 다른 이상과 구별해 환자가 작은 문제로 인해 불필요한 치료를 받는 것을 막을 수 있다.
- 침습적 절차의 제거- 때로는 제거 수술 후에야 종양의 양성이 발견되어 수술을 완전히 피할 수 있는 경우도 있습니다. 암 발견 과정에서 AI의 도움을 받으면 이러한 발생을 크게 줄일 수 있습니다. 예를 들어, 한 연구에서는 AI가 유방 보존 절차를 30.6%까지 줄일 수 있다는 사실을 발견했습니다. 영상 유도 바늘 생검을 사용하여 기계 학습 알고리즘을 훈련시켜 악성 종양을 인식할 수 있습니다. 무작위 포레스트 ML 시스템을 사용하여 335명의 잠재적 암 환자를 평가한 결과, 연구자들은 이 시스템이 불필요한 절차의 1/3을 중단했다는 사실을 발견했습니다.
- 거짓 긍정 및 부정의 감소- 암 탐지를 위한 AI는 진단 정확도를 높이고 위양성 및 음성을 감소시킵니다. 유방암 발견에 대한 연구 덕분에 증거가 있습니다. 의사가 유방촬영술을 실시한 여성 환자 10명 중 1명은 위양성 결과를 얻었고, 이로 인해 스트레스가 많은 시술과 불필요한 침습적 검사를 받아야 했습니다. Google 연구팀은 AI를 사용하여 유방조영술 판독값을 각각 6%와 9%까지 줄이는 소프트웨어를 만들었습니다. 또 다른 연구팀은 유방암 식별을 위한 AI 알고리즘을 만들었습니다. 이 알고리즘은 방사선 전문의가 검사 중에 위양성 비율을 37.3% 낮추는 데 도움이 되었습니다.
종양학 및 미래 전망에서 AI의 과제
복잡한 비선형 상호작용, 내결함성, 동시 분산 처리, 학습 등은 모두 AI가 쉽게 처리할 수 있는 작업입니다. 자기 적응, 정량적 및 정성적 정보의 동시 처리, 다양한 영역의 수많은 임상 연구에서 검증된 결과의 이점으로 인해. AI가 임상 진료에 다양한 방식으로 활용된다는 점에는 의심의 여지가 없습니다. 이는 임상적 다양성의 다양한 측면을 완전히 활용하는 동시에 전문가 시스템의 현재 부족한 보편성과 객관성을 해결합니다. 병원은 AI를 활용해 후배 의사에게 임상 진단과 의사 결정을 교육할 수 있다. 점점 더 많은 학술 논문에서 ML 기반 컴퓨터 시스템의 놀라운 진단 및 예측 기능을 논의하고 있습니다.
암 진단 및 예후에 AI 기술을 적용하려면 극복해야 할 몇 가지 심각한 어려움에 직면해 있습니다. 예를 들어 의료 영상의 원시 입력 데이터는 사용할 수 없습니다. 이미지 데이터에서 정보를 처리하고 추출하는 것은 필수적입니다. 기술 발전과 광범위한 채택으로 인해 검증, 계산되었으며 적절한 신뢰 구간을 갖는 신경망 모델의 가중치 계수 결과를 해석하기 위해서는 추가 연구가 필요합니다. 임상 의학 분야에서는 ANN에 대한 더 많은 연구가 진행됨에 따라 ANN을 더 자주 사용할 것입니다. 이 업계에서 AI의 가치는 인정받고 있지만, 컴퓨터 과학자와 의료 전문가는 함께 협력하여 학제간 직원이 교육을 받고 협업할 수 있도록 해야 합니다. 그러면 의료 전문가는 비용 효율적이고 실용적인 방식으로 이 기술의 잠재력을 활용할 수 있습니다. 개인 정보 보호 및 데이터 보안 보장은 의학 분야 AI의 미래와 관련된 주요 문제입니다. 최근 몇 년 동안 "빅 데이터"와 ML 기반 솔루션이 많은 관심을 불러일으켰지만 현재 AI가 임상 실습에 어떤 영향을 미치는지 보여주는 사례는 거의 없습니다.
Data Bridge Market Research는 암 진단 시장이 예측 기간 동안 연평균 성장률(CAGR) 7.29%로 성장해 2029년까지 282억 1천만 달러 규모에 이를 것으로 분석합니다. 암 사례의 증가는 시장에 성장 기회를 제공합니다. 암은 세계에서 두 번째로 큰 사망 원인으로, 2020년까지 1,000만 명의 사망자를 차지합니다. 암은 전세계 모든 사망자의 약 6분의 1을 차지합니다(출처: 세계보건기구). 2020년에는 1,930만 건의 새로운 암 사례가 보고되었으며, 그 숫자는 2040년까지 3,020만 건으로 증가할 것으로 예상됩니다. 이러한 암 발생률의 증가는 전체 인구뿐만 아니라 노인 인구의 증가에 기인할 수 있습니다.
연구에 대해 자세히 알아보려면 다음을 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-cancer-diagnostics-market