조항

2023년 2월 8일

컴퓨터 과학이 암 치료에 어떻게 기여합니까?

암은 전 세계적으로 사망 원인 1위를 차지하고 있습니다. 암과의 세계적 전쟁은 새로운 것이 아닙니다. 그것은 현재 수십 년 동안 계속되어 왔습니다. 암과 싸우고 이겨내려는 전 세계적인 목표는 매우 강력하여 연구자부터 과학자까지 모든 사람이 이 전 세계적 부담을 끝내기 위해 끊임없이 협력하고 있습니다.

소개

컴퓨터 과학 분야는 과거 암과의 전쟁에서 놀랍고 유망한 결과를 보여주었습니다. 암 진단 및 치료에 컴퓨터 과학을 적용하는 것과 관련된 연구 개발 능력에 대한 지출 증가는 글로벌 의료 산업에 긍정적인 신호입니다. 그러나 종양학에서 컴퓨터 과학의 역할을 이해하기 전에 최근 전 세계 암 통계를 살펴보겠습니다.

How is Computer Science Contributing to Cancer Treatment

그림 1: 2023년 암 통계(미국)

출처: Cancer.org

2023년 남성과 여성의 가장 일반적인 암 진단은 그림 1에 나와 있습니다. 남성의 모든 암 발생 사례 중 거의 절반(48%)이 전립선암, 폐암, 기관지암(이하 폐암) 및 대장암(CRC)에서 발생합니다. ), 진단의 29%가 전립선암에서만 발생합니다. 유방암은 여성의 전체 암 진단 중 31%를 차지하는 반면, 폐암, 대장암, 유방암을 합하면 전체 신규 진단의 52%를 차지합니다. 2023년 미국 내 성별 상위 10개 암 유형의 신규 사례 및 사망자 수 예상. 추정치는 가장 가까운 10개로 반올림되었으며, 사례에는 방광이나 기저 및 편평 세포 피부의 상피암은 포함되지 않습니다. 암.

How is Computer Science Contributing to Cancer Treatment

그림 2: 성별에 따른 암 발생률(1975~2019) 및 사망률(1975~2020) 추세(미국)

출처: Cancer.org

그림 2는 암 위험 행동의 패턴과 암 검진 검사와 같은 의료 행위의 변화를 반영하는 전체 암 발생률의 장기 추세를 보여줍니다. 사실, 1990년대 초반 남성 발생률의 급증은 이전에 검사를 받지 않은 남성들 사이에서 전립선 특이 항원(PSA) 검사가 널리 보급된 결과 무증상 전립선암 발견이 급증했음을 반영합니다. 이후 남성의 암 발생률은 2013년경까지 감소했다가 2019년까지 안정세를 보였다. 여성의 발생률은 1980년대 중반까지 비교적 안정적이더니 연평균 0.5%씩 서서히 증가하기 시작했다.

이에 따라 남성 대 여성 발병률 비율은 1992년 1.59(95% CI, 1.57~1.61)에서 2019년 1.14(95% CI, 1.14~1.15)로 낮아지는 등 성별 격차가 점차 줄어들고 있다. , 위험 차이는 연령에 따라 크게 다릅니다. 예를 들어, 20~49세 사이에서는 여성이 남성보다 발병률이 약 80% 더 높은 반면, 75세 이상에서는 남성이 거의 50% 더 높습니다.

C & CSc: 암 및 컴퓨터 과학

이 수치는 만연한 질병의 끔찍한 현실을 강조할 뿐만 아니라 학계, 정책 입안자 및 기타 전문가에게도 중요합니다. 왜냐하면 암과 싸우기 위한 조치를 마련하기 전에 암이 전 세계 인구에 미치는 영향을 먼저 이해해야 하기 때문입니다.

가능성이 희박한 후보자 풀(컴퓨터 과학자)에 대한 놀라운 조치 촉구는 최근 제공되는 기술 중 하나입니다. 암과의 전쟁에서 이러한 최근의 발전은 해당 분야의 연구 환경을 근본적으로 변화시키고 궁극적으로 수천 명의 생명을 구할 수 있는 잠재력을 가지고 있습니다. 이는 컴퓨터 과학이 빅데이터를 수집하여 과학 전체를 진지하게 발전시킬 수 있는 잠재적인 방법 중 하나일 뿐입니다.

인도 태생의 미국 의사이자 과학자인 Siddhartha Mukherjee는 그의 저서 The Emperor of All Maladies: A Biography of Cancer에서 암이 주로 DNA의 돌연변이에 의해 발생하는 유전병이라는 놀라운 최근 발견에 대해 썼습니다. 따라서 이러한 돌연변이로 인해 암종양은 상상할 수 없을 정도로 다양하여 완전히 근절하기가 어렵습니다.

결과적으로, 본질적으로 종양의 고유한 DNA 서열을 구성하는 수수께끼의 언어를 번역하거나 해독하는 과정인 암 종양의 게놈 서열을 분석함으로써 의사는 개별화되고 표적화된 치료법을 처방할 수 있을 것이라고 제안되었습니다. 암의 성장을 멈추거나 완전히 치료하는 것을 목표로 각 암 환자에게 적용됩니다.

UC Berkeley의 AMP Lab(Algorithms, Machines, People Laboratory) 소장 중 한 명인 David Patterson과 같은 컴퓨터 과학자들은 이러한 연구에 동기를 부여받았습니다. 인간의 눈은 스스로 그런 일을 할 수 없습니다. 엄청난 속도로 이 엄청난 양의 데이터를 올바르고 성공적으로 흡수하고 분석하려면 IBM의 Watson과 같은 세계에서 가장 강력한 인지 컴퓨팅 플랫폼이 필요합니다. 이 고도의 기술 프로세스에 컴퓨터 과학자가 참여하면 세 가지 결과가 발생합니다.

  • 정보 처리 비용을 낮추면 누구나 맞춤형 치료를 받을 수 있습니다.

  • 연구원과 의료 전문가가 접근할 수 있는 암 게놈 저장소 개발로 이어질 수 있습니다.

  • 셀 수 없이 많은 가능한 약물 조합 중에서 각각의 독특한 종양에 대한 개별화되고 표적화된 치료법을 찾기 위해 앞서 언급한 저장소를 사용함으로써 매우 큰 건초 더미에서 작은 바늘을 찾을 수 있을 것입니다.

종양학의 컴퓨터 과학을 확장한 전산 종양학

컴퓨터 생물학은 물리과학과 종양학을 연결합니다. 컴퓨터 종양학(Computational Oncology)은 의학에서 관심을 끌기 시작한 비교적 새로운 용어입니다. 어떤 사람들은 전 세계의 거대한 의료 기관이 그러한 라벨이 붙은 완전한 부서를 만들고 있다는 사실에 놀랄 수도 있습니다. 암이 어떻게 퍼지고 궁극적으로 신체에서 영구적으로 제거될 수 있는지 알아보는 데 점점 더 많은 시간, 노력, 돈 및 자원이 투입되고 있습니다.

모든 면에서 수집된 정보에 따라 오래 지속되는 솔루션을 개발할 가능성이 높아집니다. 종양 성장 경로, 종양 생물학, 생물정보학, 종양 표지자 프로필을 정리하고 이 모든 데이터를 기반으로 치료를 위한 예측 모델을 구축하기 위해 컴퓨터 종양학에서는 암의 분자적 측면을 정리합니다.

컴퓨터 모델은 전산 종양학에서 정밀 의학, 인구 선별 및 개별 암세포 모델링에 도움이 되는 종양 표지 분석을 생성하는 데 사용됩니다. 이러한 지식을 통해 특정 약물이나 치료 기술이 암 환자의 질병에 대한 장기적인 치료법을 제공할 가능성이 높아집니다.

수년 동안, 특정 상황에서는 심지어 오늘날에도 암 환자의 대다수가 "광범위하게 적용되는" 치료를 받아왔습니다. 특정 치료 접근법이 일부 환자에게는 효과적이지만 다른 환자에게는 그렇지 않은 정확한 이유를 결정하는 데 분자 표지가 없거나 덜 유용할 때. 환자에게 더 나은 서비스를 제공하기 위해 전산 종양학 부서는 차세대 시퀀싱(NGS)을 통해 건강한 세포와 ​​질병에 걸린 세포 모두에서 사용할 수 있는 게놈에 대한 풍부한 정보를 가져와 데이터베이스로 구성할 수 있습니다.

이 신흥 의학 분야의 모든 측면을 관리하기 위해 일부 부서에서는 컴퓨터 과학이나 실험실 과학 분야의 기술을 갖춘 사람을 찾습니다. 교육자, 과학자, 임상의의 경우 이 분야가 확대되고 있습니다. 국제연구기관(International Agency for Research)에 따르면, 우리는 함께 협력함으로써 전 세계적으로 암 발병률을 줄이기 위한 지식과 기술을 늘릴 수 있습니다. 암 발병률은 2012년 1,410만 건에서 2030년까지 연간 2,360만 건으로 증가할 것으로 예상됩니다. 암에.

Data Bridge Market Research는 암 진단 시장이 예측 기간 동안 연평균 성장률(CAGR) 7.29%로 성장해 2029년까지 282억 1천만 달러 규모에 이를 것으로 분석합니다. 북미는 수많은 생명공학 및 의료 기기 회사의 존재 증가, 연구 개발 프로젝트에 사용할 수 있는 자금 증가, 이 지역의 첨단 기술 채택률 증가로 인해 암 진단 시장을 지배하고 있습니다. 암 진단 시장에서 활동하는 주요 업체 중 일부는 Abbott입니다. (미국), DiagnoCure Inc.(캐나다), Thermo Fisher Scientific Inc.(미국), Illumina, Inc.(미국), QIAGEN(독일) 및 F. Hoffmann-La Roche Ltd(스위스).

연구에 대해 자세히 알아보려면 다음을 방문하세요. https://www.databridgemarketresearch.com/ko/reports/global-cancer-diagnostics-market

''마이크로소프트의 10년 간의 야망'

Microsoft는 암과 싸우기 위해 기계 학습 및 알고리즘을 포함한 컴퓨터 과학을 활용하고 있습니다. Microsoft 연구자들은 정보 처리 시스템처럼 암에 접근하여 생물학적 프로세스를 시뮬레이션하기 위해 계산 프로세스를 모델링하는 데 일반적으로 사용되는 기술을 수정할 수 있습니다.

이 회사의 궁극적인 목표는 암세포가 발견되자마자 신체에 암세포와 싸우도록 지시하는 분자 컴퓨터를 개발하는 것입니다. 이를 데이터 기반 전략과 결합하여 기계 학습을 통해 질병 센터와 싸우려는 Microsoft의 노력을 보여줍니다. 이 기업은 분석 도구를 사용하여 기존 생물학적 데이터를 수집하고 이를 사용하여 질병을 더 잘 이해하고 치료하기를 희망합니다.

이는 단순한 비유가 아닌 심오한 수학적 발견입니다. 생물학과 컴퓨팅은 극과 극으로 떨어져 있는 것처럼 보이지만 실제로는 가장 근본적인 수준에서 매우 깊은 관계를 맺고 있습니다. 예를 들어, 기계 학습과 자연어 처리를 활용하여 이용 가능한 연구 데이터를 분류하는 방법을 제공하고, 이를 종양 전문의에게 제공하여 환자에게 가장 효과적이고 맞춤화된 암 치료법을 개발할 수 있습니다.

현재 정보가 너무 많아서 한 개인이 모든 내용을 읽고 이해하기가 어렵습니다. 기계학습을 통해 인간보다 정보를 더 빠르고 간단하게 처리할 수 있습니다.

또한 기계 학습은 컴퓨터 비전과 결합되어 방사선 전문의가 환자의 종양이 어떻게 진행되는지 더 잘 이해할 수 있도록 돕습니다. 연구원들은 앞으로 3D 스캔의 픽셀을 분석하여 이전 스캔 이후 종양이 얼마나 성장, 감소 또는 모양이 변경되었는지 정확하게 파악하는 시스템을 개발하고 있습니다. Cambridge Lab의 생물학적 계산 연구 부문 책임자인 Andrew Phillips에 따르면, 과학자들은 소프트웨어 산업의 선구자로서 Microsoft의 유산으로부터 배울 수 있습니다. "우리는 컴퓨터 프로그래밍을 위해 발견한 기술을 사용하여 생물학을 프로그래밍할 수 있습니다."라고 그는 덧붙였습니다. "이것은 훨씬 더 많은 용도와 더 나은 치료법을 열어줄 것입니다."

필립스는 질병을 추적하기 위해 세포 내에 삽입할 수 있는 분자 컴퓨터를 개발하고 있습니다. 센서가 암과 같은 것을 발견하면 질병 퇴치를 위한 대응이 시작됩니다. 이러한 유형의 연구는 또한 기존 컴퓨팅을 사용하고 이를 생명공학이나 의료 응용 분야에 사용하기 위해 용도를 변경하여 컴퓨터를 프로그래밍하는 것과 동일한 방식으로 질병에 맞서 싸우도록 신체를 훈련시킬 수 있습니다.

연구가 아직 초기 단계에 있지만, 필립스는 텔레그래프와의 인터뷰에서 "5~10년" 안에 이러한 방식으로 질병을 퇴치하기 위해 스마트 분자 시스템을 이식하는 것이 기술적으로 실현 가능할 것이라고 말했습니다.

결론

암 연구는 점점 더 온라인으로 진행되고 있습니다. 컴퓨터 과학자들은 앞으로 10년 안에 암과 싸울 수 있는 최고의 재능을 갖게 될 수 있기 때문에 대거 참여해야 합니다. 암 종양의 게놈 서열을 분석함으로써 의료 전문가들이 머지않아 암 확산을 늦추거나 멈추기 위한 맞춤형 표적 치료법을 제공할 수 있을 것으로 기대됩니다.

컴퓨터 과학이 얼마나 빨리 환자의 삶에 영향을 미치고 암 연구에 통합되었는지를 고려하면, 앞으로 몇 년 동안은 생산성이 동일하거나 더 높을 것이라고 예측하는 것이 합리적으로 보입니다. 향후 10년 동안 의료 종사자들은 건강한 조직과 아픈 조직이 어떻게 발달하고 진화하는지에 대한 상세한 지도를 만들 수 있을 것으로 예상됩니다. 이 지도는 그들이 새로운 암 진단 및 치료법을 설계하는 데 도움이 될 것입니다.

Data Bridge Market Research는 2022년 96억 4천만 달러 규모인 헬스케어 시장이 2023~2030년 예측 기간 동안 연평균 성장률(CAGR) 51.87%로 성장해 2030년에는 2,729억 1천만 달러에 이를 것으로 예상하고 있습니다. 시장은 제품, 기술, 최종 사용자 및 애플리케이션을 기준으로 분류됩니다. 아시아 태평양 지역은 인식 제고를 위한 정부 이니셔티브 증가, 의료 관광 증가, 지역 내 고품질 의료에 대한 수요 증가로 인해 2023~2030년 예측 기간 동안 가장 높은 성장률로 성장할 것으로 예상됩니다.

연구에 대해 자세히 알아보려면 다음을 방문하세요. https://www.databridgemarketresearch.com/ko/reports/global-artificial-intelligence-in-healthcare-market


고객 추천사