조항

2022년 12월 14일

AI가 가져온 에너지 산업 변혁

  • 최근 연구에 따르면 유럽은 에너지 관련 혁신이 가장 활발한 지역 중 하나입니다.
  • 저탄소 에너지로의 전환을 뒷받침하는 핵심 동력 중 하나는 전기 자동차입니다.

데이터 브릿지 시장 조사(Data Bridge Market Research)는 전기 자동차 충전소 시장의 가치가 2021년 69억 7천만 달러로 평가되었으며, 2022~2029년 예측 기간 동안 연평균 성장률(CAGR) 48.80%를 기록해 2029년까지 1,675억 2천만 달러에 이를 것으로 예상됩니다. 전기 자동차의 사용으로 인해 충전 인프라 개발의 필요성이 부각되었습니다. 예를 들어, 중국, 미국, 독일은 전기 자동차(EV) 충전 인프라와 더 빠르고 효율적인 충전 기술을 위한 연구 개발에 막대한 투자를 하고 있습니다. ABB(스위스), Shell plc(영국), ChargePoint(미국), Tesla(미국), BYD(중국), bp Chargemaster(영국), Webasto Thermo & Comfort(독일), Schneider Electric(프랑스), Blink Charger Co. (미국), Groupe Renault(프랑스), Phihong USA Corp.(미국) 등이 시장에서 활동하는 주요 업체 중 일부입니다.

연구에 대해 자세히 알아보려면 다음을 방문하세요. https://www.databridgemarketresearch.com/ko/reports/global-electric-vehicle-charge-stations-market

기후재앙으로 인한 문제를 해결하기 위한 필수 단계 중 하나는 저탄소에너지(LCE)로의 전환입니다. 배출량을 낮추지 않고 청정 에너지 사용을 확대하지 않으면 파리 기후 협정의 온도 제한을 초과할 수 있습니다. 유럽특허청(EPO)과 국제에너지기구(IEA)가 발표한 친환경 에너지로의 전환을 지원하는 데 필요한 기술 개발에 관한 두 번째 연구에 따르면 이는 사실이다. EPO와 IEA는 혁신의 패턴을 찾기 위해 국제 특허 데이터베이스를 샅샅이 뒤졌고, 국제 특허군으로 알려진 여러 관청에 특허가 출원된 사례를 집계하여 지금까지 달성된 진행 상황(IPF)을 측정했습니다. 논문에 따르면, "이 특허 데이터는 경제에 확실히 영향을 미칠 기술 발전의 초기 지표를 제공하고 혁신이 어떻게 에너지 전환을 촉진하는지 보여줄 수 있습니다."

Growth of Low Carbon Energy

그림 1: 저탄소 에너지의 글로벌 성장

출처: 유럽특허청

2014년부터 2016년 사이에는 그린 에너지에 대한 IPF 확대가 둔화되었습니다. 그러나 EPO/IEA 보고서에 따르면 다시 한번 증가하고 있습니다. 또한, LCE 관련 특허의 증가는 화석연료 사용의 감소와 일치합니다.

모든 산업에서 그렇듯 인공지능(AI)은 에너지 및 유틸리티 산업에 혁명을 일으키고 있습니다. 전력이 필요할 때, 필요한 곳에 최소한의 폐기물로 전력을 공급하기 위해 수요를 예측하고 자원 배분을 제어하는 ​​데 사용됩니다. 재생에너지는 장기 저장에 적합하지 않고 생산된 후에는 가능한 한 빨리 사용해야 하기 때문에 이는 재생에너지 부문에 매우 중요합니다. 세계경제포럼(World Economic Forum)에 따르면, AI는 전 세계가 재생 에너지로 전환하는 데 매우 중요할 것입니다. 보다 정확한 공급 및 수요 예측으로 인해 효율성이 향상됩니다.

발전 및 배전의 분산형 모델도 중앙 집중형 모델을 대체하고 있습니다. 이러한 모델에서는 지역화된 소규모 전력망(예: 태양광 발전소)을 통해 더 많은 전력이 생산되며 이러한 네트워크의 통합을 조정하려면 정교한 AI 알고리즘이 필요합니다. 계획은 전력 인프라와 사람과 사물이 전기를 사용하는 건물 사이에 위치할 '지능형 조정 레이어'를 구축하는 것입니다.

2022년에는 AI를 새로운 방식으로 활용하는 스타트업의 더 많은 혁신을 기대할 수 있습니다. 예를 들어, 독일의 Likewatt는 소비자가 전력 소비의 영향을 실시간으로 모니터링하고 에너지 공급에 대해 더 많은 정보를 바탕으로 선택할 수 있도록 이산화탄소 배출량과 전력 소비를 추정하는 서비스인 Optiwize를 개발했습니다. 재생 에너지 생산의 효율성을 높이기 위해 다른 기업에서는 예측 유지 관리 기술을 개발하고 있습니다. 전력, 운송, 산업, 건설 부문 간의 상호 작용이 증가하고 더욱 통합되고 전기화된 에너지 시스템은 세계 에너지 시스템을 탈탄소화하려는 시도의 결과입니다. 전력 부문의 높은 수준의 분산화도 에너지 공급의 탈탄소화 노력으로 인해 발생하고 있습니다. 점점 복잡해지는 이 시스템을 관리하고 온실가스 배출량을 최소화하도록 최적화하려면 소비자를 포함한 모든 부문 행위자의 상당히 높은 수준의 협력과 적응성이 필요합니다.

다양한 재생 가능 에너지 자원을 전력망에 최적화하고 효과적으로 통합하는 것부터 사전 예방적이고 자율적인 배전 시스템 지원, 수요 측면 유연성을 위한 새로운 수익원 창출에 이르기까지 AI는 다양한 응용 분야를 지원하고 가속화할 수 있는 상당한 잠재력을 가지고 있습니다. 안정적이고 최소 비용의 에너지 전환. 최신 지속 가능한 에너지 및 저장 기술을 뒷받침하는 고성능 소재를 찾는 데 AI를 사용하면 상당한 이점을 얻을 수 있습니다. 그러나 그 잠재력에도 불구하고 AI는 에너지 부문에서 주로 사전 자산 유지 관리를 위한 실험 프로그램에 사용되는 경우가 있습니다. AI는 효과적이기는 하지만 현재 평가되는 것보다 전 세계 에너지 전환 속도를 높일 수 있는 잠재력이 훨씬 더 높습니다. 다음은 AI가 다양한 애플리케이션을 통해 에너지 부문에 어떤 영향을 미칠지에 대한 논의입니다.

Top Applications of AI in the Energy Industry

그림 2: 에너지 산업에서 AI의 주요 응용 분야

  • 스마트그리드- "스마트"해지기 위해 이제 그리드를 센서, 데이터 분석 도구, 에너지 저장 시스템, 에너지 관리 플랫폼 및 기타 에너지 기술에 연결할 수 있습니다. 에너지 공급자는 스마트 그리드를 사용하여 모든 그리드 장치에서 에너지 소비에 대한 데이터를 수집하고 고객을 위한 에너지 효율성 프로젝트를 만들 수 있습니다. 또한 에너지 회사의 에너지 사용 및 흐름을 거의 실시간으로 모니터링할 수 있습니다. 그런 다음 피크 시간대에 에너지를 차단할 수 있는 자동화된 수요 응답 시스템을 통해 에너지 회사는 에너지 사용량을 최소화할 수 있습니다. 결과적으로, 가정과 에너지 공급자 모두 에너지를 절약할 수 있습니다. 마이크로그리드는 메인 그리드와 독립적으로 작동할 수 있는 작은 전력 그리드입니다. AI와 기계 학습은 마이크로그리드 제어 시스템에서 에너지 사용을 최적화하고 에너지 흐름을 제어하는 ​​데 사용됩니다. 마이크로그리드는 비상 상황 시 에너지 보안을 제공할 수 있고 재생 에너지원을 기존 에너지 네트워크보다 그리드에 통합하는 것이 더 간단하기 때문에 마이크로그리드의 인기가 높아지고 있습니다.
  • 그리드 보안 및 관리- AI는 에너지 시스템을 최적화하기 위해 건물, 기업, 축전지, 재생 에너지원, 마이크로그리드 및 주 전력망 내부와 사이의 에너지 흐름을 관리하는 데 사용됩니다. 이는 에너지 사용에 대한 소비자 인식을 높이는 동시에 에너지 낭비를 줄입니다. 풍력, 태양광 등 간헐적 재생에너지원의 인기가 높아지고 있음에도 불구하고. 결과적으로 이러한 에너지원은 필요할 때 항상 사용할 수 있는 것은 아닙니다. 에너지 그리드는 생성되는 에너지를 실시간으로 관리해야 하기 때문에 이는 어려운 과제입니다. 에너지 기업은 AI와 머신러닝의 도움을 받아 재생 가능한 전기를 언제 사용할 수 있을지 예측하고 그에 따라 에너지 그리드를 관리할 수 있습니다. 로봇은 에너지 설치, 그리드 유지, 에너지 생산 및 소비 추적에도 사용됩니다. 파이프라인, 풍력 터빈 및 기타 에너지 인프라를 수리하기 위해 로봇을 활용할 수 있습니다. 에너지 기업은 이러한 프로세스를 자동화하여 효율성을 더욱 높이고 비용을 절감할 수 있습니다. 전력망과 같은 정교한 시스템은 해커에게 공개되어 있습니다. AI와 머신러닝은 사이버 공격이 발생하기 전에 이를 저지함으로써 전력 인프라의 보안을 강화할 수 있습니다. 이를 위해 데이터 분석을 사용하여 사이버 공격의 징후가 될 수 있는 에너지 데이터의 추세를 찾습니다. AI와 머신러닝은 사이버 공격이 감지되면 이에 대응하는 데 사용될 수 있습니다.
  • 전력 도난 감지- 전기 절도 및 사기로 인해 에너지 및 유틸리티 부문에 연간 최대 960억 달러의 손실이 발생하며, 미국에서만 최대 60억 달러의 손실이 발생합니다. 그리드에서 불법적으로 에너지를 끌어오는 것을 전력 절도라고 합니다. 에너지 데이터나 에너지 사용을 의도적으로 왜곡하는 것을 에너지 사기라고 합니다. 이러한 이상 현상은 AI와 기계 학습을 사용하여 에너지 회사에서 자동으로 발견하고 표시하여 해결하도록 할 수 있습니다. 에너지 기업은 이를 통해 자원을 보호하고, 에너지 낭비를 줄이며, 재정을 절약할 수 있습니다.
  • 생산 개선 및 증가 에너지 부문에서도 생산량을 늘리기 위해 AI와 머신러닝을 활용하고 있습니다. 예를 들어, 기계 학습 알고리즘은 석유 및 가스 회사에서 유정을 개선하고 생산량을 늘리기 위해 사용됩니다. 이러한 기업은 지진 조사 및 기타 소스에서 얻은 데이터를 분석하여 석유 및 가스 시추 위치를 보다 효과적으로 결정할 수 있습니다. 이를 통해 에너지 효율성이 향상되고 에너지 공급자가 관리하기가 더 간편해지는 보다 깨끗하고 효과적인 에너지 시스템이 탄생하게 됩니다.
  • 에너지 저장 및 예측 분석- 2030년까지 에너지저장장치 시장은 20배 성장할 것으로 예상된다. 에너지 관리의 효율성을 높이기 위해 스마트 에너지 저장 기술을 에너지 그리드에 포함할 수 있습니다. 이제 전력사업자는 에너지 저장장치를 활용해 가상 발전소를 건설해 현재 에너지 공급이 부족하더라도 필요할 때 에너지를 공급할 수 있다. 이는 에너지 기업이 새로운 발전소를 건설해야 하는 요구 사항을 줄여줍니다. 에너지 수요의 미래 변화는 예측 분석을 통해 예측할 수 있습니다. 그런 다음 미래를 계획하고 에너지 수요를 공급하기 위해 적절한 인프라를 구축할 수 있습니다. 에너지 기업은 예측 분석을 활용하여 기계나 장비가 오작동할 가능성이 가장 높은 시기를 예측할 수도 있습니다. 이는 예상치 못한 정전을 방지하는 데 도움이 될 뿐만 아니라 기업이 값비싼 필수 에너지 자산의 교체에 대비하고 예상치 못한 유지 관리 작업을 피함으로써 비용을 절감하는 데 도움이 됩니다.
  • 고객 참여- 에너지 부문은 고객 상호작용을 위해 AI와 머신러닝을 수용하기 시작했습니다. 에너지 기업은 AI와 머신러닝을 활용해 고객의 요구 사항에 맞는 정보를 제공할 수 있습니다. 여기에는 고객 데이터를 분석하여 에너지 사용량을 이해한 다음 에너지 소비를 줄이기 위해 사용 습관을 바꾸는 방법에 대한 정보를 제공하는 작업이 수반됩니다.
  • 트레이딩 에너지- 에너지는 즉시 주어야 하기 때문에 에너지 거래는 다른 상품과 다릅니다. 이로 인해 에너지 거래자들은 어려움에 직면하지만, 에너지 시장이 점점 더 유동적으로 변하고 있기 때문에 기회도 있습니다. 에너지 수요를 예측하고 거래자에게 실시간 가격 데이터에 대한 액세스를 제공함으로써 AI 및 기계 학습을 활용하여 에너지 거래 시장의 효율성을 향상시킬 수 있습니다. 그러면 에너지 거래자는 이 정보를 사용하여 에너지 구매 및 판매 시점에 대해 더 많은 정보를 바탕으로 선택할 수 있습니다. 에너지 구매자와 판매자 간의 금융 계약인 전력 구매 계약(PPA)은 블록체인 기술을 사용하여 개발되었습니다. 이러한 계약은 거래 속도를 높이고 기존 PPA 플랫폼보다 사용 비용이 저렴하며 매우 안전한 플랫폼을 기반으로 하기 때문에 블록체인 기술 덕분에 더욱 효과적입니다.

재생 에너지 커넥터 시장은 2021년부터 2028년까지 예측 기간 동안 6.10%의 비율로 성장할 것으로 예상됩니다. 재생 에너지 커넥터 시장에 대한 Data Bridge 시장 조사 보고서는 재생 에너지원 채택 증가와 같은 요인에 대한 분석 및 통찰력을 제공합니다. 높은 설치 비용과 천연자원 고갈은 위에서 언급한 예측 기간 동안 재생 에너지 커넥터에 대한 시장 제약으로 작용하고 있습니다. 지구 온난화 수준의 증가와 인구의 급격한 증가는 위에서 언급한 예측 기간 동안 재생 에너지 커넥터 시장의 성장에 가장 큰 도전이 될 것입니다. 재생 에너지 커넥터 시장은 유형, 에너지원, 애플리케이션 및 최종 사용자를 기준으로 분류됩니다. 아시아 태평양은 유통 채널의 증가와 함께 지역의 에너지 개혁 증가로 인해 재생 에너지 커넥터 시장을 지배할 것이며, 북미는 우호적인 정책의 확산으로 인해 2021~2028년 예측 기간에 성장할 것으로 예상됩니다. 재생 가능 포트폴리오 표준 증가.

연구에 대해 자세히 알아보려면 다음을 방문하세요. https://www.databridgemarketresearch.com/ko/reports/global-renewable-energy-connector-market

AI는 에너지 전환 속도를 어떻게 가속화할 것인가?

새로운 IPCC 평가에서는 재앙적인 장기적 기후 영향을 방지하기 위해 더 많은 조치가 시급히 필요하다는 점을 명확하게 밝혔습니다. 화석 연료는 여전히 세계 에너지의 80% 이상을 공급하므로 모든 계획은 에너지 부문에 집중되어야 합니다. 다행스럽게도 에너지 시스템은 이미 변화하고 있습니다. 재생에너지 생산은 비용 감소와 투자자 관심 증가로 인해 빠르게 확대되고 있습니다. 그러나 시간이 얼마 남지 않았고, 에너지 시스템 전체를 탈탄소화하는 데 드는 규모와 비용도 여전히 막대하다. 지금까지 에너지 산업의 전환 노력의 대부분은 하드웨어, 즉 기존의 탄소 집약적 시스템을 대신할 새로운 저탄소 인프라에 집중되어 있었습니다. 변화를 위한 또 다른 중요한 도구인 차세대 디지털 기술, 특히 인공 지능은 거의 관심과 자금 지원(AI)을 받지 못했습니다. 이러한 강력한 기술은 새로운 하드웨어 솔루션보다 더 빠른 규모로 채택되어 에너지 전환을 가속화할 수 있는 잠재력을 가지고 있습니다. 세 가지 주요 추세는 AI가 에너지 전환을 가속화할 수 있는 잠재력을 주도합니다.

  • 신속한 CO2 배출 감소에 대한 대중의 압력이 높아지면서 전력, 운송, 중공업, 건물 등 에너지 집약적 산업에서 역사적인 탈탄소화 프로세스가 이제 막 시작되고 있습니다. 이러한 변환은 범위가 엄청납니다. BloombergNEF에 따르면 2050년까지 에너지 부문에서만 순배출량 제로를 달성하려면 인프라 투자에 92조~173조 달러가 필요할 것으로 예상됩니다. 따라서 청정 에너지와 저탄소 산업의 유연성, 효율성 또는 용량이 조금만 증가해도 수조 달러의 가치와 절감 효과를 얻을 수 있습니다.
  • 전기가 더 많은 산업과 응용 분야를 지원함에 따라 전력 부문은 세계 에너지 공급의 주요 기둥으로 진화하고 있습니다. 전력망을 안전하고 안정적으로 관리할 수 있도록 재생에너지 배치를 늘리면 산발적인 에너지원(예: 태양광, 풍력)을 통해 더 많은 전력이 공급되므로 예측, 조정 및 유연한 소비의 필요성이 높아집니다.
  • 분산 발전, 분산 저장, 향상된 수요 대응 능력의 급속한 확장은 저탄소 에너지 시스템으로의 전환에 의해 주도됩니다. 이러한 기능은 더욱 네트워크화된 트랜잭션 전력망을 통해 조정되고 통합되어야 합니다.

에너지 시스템과 에너지 집약적 부문은 이러한 추세를 헤쳐나가는 데 엄청난 전략적, 운영적 장애물에 직면해 있습니다. AI는 에너지 시스템 이해관계자가 데이터의 패턴과 통찰력을 식별하고, 경험을 통해 학습하고, 시간이 지남에 따라 시스템 성능을 개선하고, 생성, 전송 및 사용 전반에 걸쳐 지능형 조정 계층을 구축함으로써 복잡하고 다변량인 상황의 잠재적 결과를 예측 및 모델링하는 데 도움을 줄 수 있습니다. 에너지의. 재생 에너지 예측, 그리드 운영 및 최적화, 분산 에너지 자산 및 수요 측면 관리 조정, 재료 혁신 및 발견을 포함하여 에너지 전환의 여러 영역에서 이미 AI의 실질적인 이점을 확인하고 있습니다. 에너지 부문에서 AI의 사용은 지금까지 유망한 것으로 나타났지만 혁신이나 광범위한 수용은 이루어지지 않았습니다. 이는 우리가 필요로 하는 미래 에너지 시스템, 즉 배출이 없고 매우 효율적이며 연결된 에너지 시스템으로의 전환을 가속화할 수 있는 환상적인 기회를 제공합니다. 글로벌 에너지 전환을 가속화하는 AI의 능력은 이전에 생각했던 것보다 훨씬 크지만, 이러한 잠재력은 업계 전반의 AI 혁신, 채택 및 협업이 증가하는 경우에만 실현될 수 있습니다.

재생 에너지 그리드 탄력성에 대한 AI의 핵심은 무엇입니까?

  • 전 세계가 재생에너지로 전환하는 과정에서 분산형 그리드를 관리하려면 인공지능(AI) 기술이 필요할 것이다.
  • AI는 에너지 사용과 저장을 최적화하여 비용을 낮추고 실시간으로 전력 공급과 수요의 균형을 맞출 수 있습니다.
  • 탄력적인 전력원을 확보하고, 혁신을 촉진하고, 접근을 민주화하려면 기술 거버넌스가 필요합니다.

과거의 기술을 사용하여 오늘날의 과제를 해결하기 위해 정부는 중앙 집중식 전원 공급원에서 긴 송전선을 현대화하기 위해 그리드 인프라에 투자해야 한다는 요구가 제기되었습니다. 우수하고 보다 진보적인 대체품은 이미 분산 재생 에너지원을 활용하는 인공 지능(AI)이 존재합니다. 따라서 AI는 다음 두 가지 측면에서 재생 에너지 촉진의 핵심입니다.

AI's Assistance in Promoting Renewable Energy

그림 3: 재생 에너지 홍보에 대한 AI의 지원

  • 재생에너지의 복잡성 증가- 세계가 더욱 전기화됨에 따라 분산된 재생 가능 에너지원에서 더 많은 에너지가 생성될 것입니다. 배터리, 개인 태양광 패널, 풍력 발전 단지, 마이크로그리드를 고려해보세요. 지속 가능성에 유리하더라도 전 세계적으로 에너지 인프라가 복잡해질 것입니다. 전기 자동차 채택 증가, 난방 시스템 전기화, 분산 에너지 자원 확산으로 인해 향후 10~15년 동안 전력망을 무너뜨리지 않고 수요와 공급을 일치시키기 위한 섬세한 균형 조정 조치가 필요할 것입니다. (DER)은 풍력 터빈 및 태양광 패널과 같습니다. 호주를 예로 들어 보겠습니다. 2030년과 2050년까지 전국 주거, 상업, 산업 구조물의 30%와 60%가 태양에너지를 사용할 것으로 예상됩니다. 점점 더 많은 상업용, 정부 및 주거용 소비자가 태양광 패널을 사용하여 자체 에너지를 생산하고, 이를 전기 자동차에 사용하기 위해 배터리에 저장하거나 전력망으로 반환함에 따라 유사한 상황이 전 세계적으로 발생하고 있습니다. 우리의 예측에 따르면 2030년까지 유럽 전력망에 에너지 저장 장치가 8,900만 개 있을 것으로 예상됩니다. 이는 현재 추정치인 3,600만 개보다 증가한 수치입니다(아래 그림 참조). 수백만 개의 개별 장치가 전기를 게시하고 다운로드하면 전기 그리드가 혼란스러워질 수 있습니다. 즉, 전기를 생산하고 송전하는 단일 유틸리티에 대한 의존도가 줄어들고 있으므로 유틸리티는 비즈니스 모델을 변경해야 합니다. 머지않아 그것들은 유일한 에너지원이 아닐 것이다. 대신, 다양한 소스와 저장 시스템에서 전자를 전송하여 필요한 곳에 에너지를 매초 효율적으로 공급함으로써 그리드 균형을 유지해야 합니다.
  • 수백만 개의 그리드의 균형을 맞추는 AI- 분산형 에너지원은 AI 소프트웨어를 사용하여 생성된 추가 전기를 그리드로 전송할 수 있으며, 유틸리티는 필요한 곳에 해당 전기를 라우팅할 수 있습니다. 집, 사무실, 자동차 및 기타 구조물에서 수요가 낮을 때 추가 에너지를 보관할 수 있는 에너지 저장 장치와 유사하게 AI는 발전이 부족하거나 불가능할 때 해당 에너지를 사용할 수 있습니다. 해당 시스템에는 움직이는 부분이 많이 있습니다. 따라서 그리드 안정성을 유지하려면 조정, 예측 및 최적화가 필요합니다. DER을 개별 음악가로 상상하면 AI가 실시간으로 교향곡을 작곡하므로 유틸리티는 오케스트라를 제때에 유지하는 지휘자와 같습니다. 결과적으로 AI 기반 시스템은 게임을 변화시킬 수 있습니다. 예상치 못한 사건이 발생할 때 더욱 탄력적이고 유연한 그리드는 인프라가 많은 시스템에서 AI 중심 시스템으로 전환한 결과입니다. 이제 며칠이 아닌 몇 초 만에 예측과 제어가 가능해졌습니다.

분산형 에너지 자원과 관련하여 유틸리티, 의사 결정자 및 규제 기관은 각자의 역할을 고려하기 시작해야 합니다. 분산 에너지 생산자의 패치워크에 대한 관리 및 조정이 필수적입니다. 옥상 태양광 패널과 유사한 기술로 인해 더 많은 주택과 기업이 자체 에너지를 생산하기 시작하면서 전력 구매 고객 수가 감소함에 따라 유틸리티는 이러한 상황에서 주도권을 잡을 수 있습니다. 기후 변화는 계속해서 전 세계에 더 많은 극한의 날씨를 가져올 것이기 때문에 낭비할 시간이 없습니다. 현재의 경제 상황과 미국에서 예상되는 것과 같은 정치적 논의가 길어지면서 필요한 투자가 줄어들 가능성이 높습니다. 가장 좋은 조치는 긴 케이블과 변압기 네트워크를 갖춘 중앙 집중식 그리드에 투자하지 않는 것입니다. 오히려 정부는 지역 사회와 건물이 자체적으로 전력을 생산하고 소프트웨어를 통해 실시간으로 관리되는 전력망에 대한 계획을 세워야 합니다. 정책입안자는 재생에너지 생산에 대한 공공 재정 지원과 민간 산업 및 주택의 분산형 에너지 생산에 대한 인센티브를 고려해야 합니다. 그리고 에너지 환경 전반에 걸쳐 상호 운용성, 투명성 및 공정한 액세스를 보장하려면 전 세계적으로 승인된 AI 소프트웨어 거버넌스가 필요합니다.

결론

AI 관련 기술 거버넌스에 대한 적극적이고 협력적인 접근 방식은 에너지 부문에 유리할 것입니다. 다가오는 해는 이 분야의 혁신을 촉진하고 에너지 시스템 전반에 걸쳐 혁신적인 저탄소 기술에 대한 접근을 민주화하는 데 중요할 것입니다. 이전에 승인되지 않은 경우 업계에서는 이를 위한 조건으로 공통 데이터 표준을 구현하고 보다 일반적으로 디지털화해야 합니다. 에너지 산업 내 행위자 간의 협력 증가는 공동 R&D 프로젝트, AI 개념을 적용하기 위한 모범 사례 기술 공유, 사용 사례 제시 등의 형태로 이루어질 수 있습니다. 협업은 또한 AI 기술 제작자, 소비자, 규제 기관 및 AI 시스템과 상호 작용하는 기타 이해관계자 간의 신뢰를 증진할 수 있습니다. 그리드 규제 기관과 운영자는 특히 그리드 관리 및 운영이 더욱 복잡해짐에 따라 그리드 운영 방식을 개선하기 위해 다양한 디지털 기술(예: 기계 학습, 양자 컴퓨팅, 블록체인 기술 등)의 잠재력을 고려해야 합니다. 배전망 수준. 전력 시스템이 탈탄소화되고 분산됨에 따라 그리드 관리를 재고해야 할 필요성과 그리드 액세스, 운영 및 관리 결정을 위한 새롭고 더욱 분산화된 설계를 개발할 수 있는 기회가 발생합니다. 전통적인 수동 명령 및 제어 관리 방법(중앙 시스템 운영자 포함)은 기술 기반 분산형 의사 결정으로 대체되어야 합니다. 이를 통해 더 빠른 의사 결정이 가능하고 더 작은 분산 자산을 그리드에 자동으로 추가해야 합니다(예: 블록체인 사용). , 디지털 신원 및 스마트 계약). 정부는 데이터의 공평한 보급의 일환으로 산업 데이터의 중앙 데이터베이스를 관리하고 자금을 조달하도록 공공 및 산업 기관에 인센티브를 명령하거나 제공할 수 있습니다. 이러한 데이터 세트는 AI 알고리즘의 훈련을 허용하고 품질이 낮거나 희박한 데이터로 인해 자주 발생하는 알고리즘 편향을 줄일 수 있습니다.

전력 효율적이고 내구성이 뛰어난 시스템에 대한 수요가 증가하면서 에너지 수확 시스템에 대한 수요도 증가했습니다. Data Bridge Market Research는 에너지 하베스팅 시스템 시장이 2021~2028년 예측 기간 동안 10.04%의 CAGR을 보일 것으로 분석합니다. 이는 현재 시장 가치가 2028년까지 10억 4,250만 달러로 증가한다는 것을 의미합니다. 에너지 하베스팅 시스템은 환경의 에너지를 사용 가능한 전력으로 변환하는 기술입니다. 이 시스템은 열, 빛, 소리 또는 진동의 형태로 손실되는 환경에서 소량의 에너지를 추출합니다. 북미는 건물 및 가전제품에 에너지 수확 시스템의 채택 및 적용이 증가하면서 시장을 지배하고 있습니다. 산업 및 자동차 부문의 성장 역시 이 지역 국가 전체의 시장 성장을 촉진했습니다. 미국은 여기서 가장 큰 기여자입니다.

연구에 대해 자세히 알아보려면 다음을 방문하세요. https://www.databridgemarketresearch.com/ko/reports/global-energy-harvesting-system-market


고객 추천사