데이터 센터는 본질적으로 아웃소싱된 데이터 센터이기 때문에 서비스형 인프라(IaaS) 성장의 촉매제로 빠르게 자리 잡고 있습니다. IaaS와 데이터 센터에 대한 개별적인 수요는 두 솔루션의 결합을 통해 충족되어 왔습니다. 이러한 결합은 본질적으로 데이터 센터 서비스와 솔루션을 인프라 솔루션으로 제공하는 것을 의미합니다. 데이터 센터 구축과 서비스형 인프라의 주요 차이점은 기존 데이터 센터는 최종 사용자가 모든 장비와 구성 요소를 직접 구성하고 구축을 위해 전문화된 인프라를 필요로 한다는 것입니다. 또한, 발생하는 모든 복잡성과 문제를 처리할 수 있는 숙련된 IT 전문가를 확보해야 합니다.
이러한 모든 서비스는 스토리지 및 인프라 용량 향상을 목표로 다양한 조직의 구내에 설치 및 통합됩니다. 이처럼 구내에 데이터 센터를 통합하려면 다양한 인프라, 구성 요소 및 인력 수요를 충족하기 위해 막대한 자금이 필요합니다. 따라서 다양한 IT 서비스 제공업체는 자체 전문 데이터 센터를 구축하여 IaaS 형태로 제공하기 시작했습니다. 다양한 IT 제공업체가 제시하는 이러한 혁신적인 솔루션은 인프라 구축에 막대한 자본을 투자하지 않고도 데이터 센터의 모든 이점을 활용할 수 있으므로 중소기업에게 매우 비용 효율적입니다.
데이터 센터가 서비스 형태로 제공됨에 따라, IT 공급업체는 데이터 센터 운영 최적화를 담당하는 유지보수 및 업그레이드 비용을 부담하게 됩니다. 이러한 서비스의 이점 중 하나는 다양한 IT 공급업체가 자사 데이터 센터에 인공지능을 통합하기 시작했다는 점입니다. 이는 고효율 전문 비즈니스 솔루션 제공 역량에 상당한 영향을 미쳤습니다. 인공지능은 데이터 센터의 보안 강화에 기여하기 때문에 이러한 영향은 매우 긍정적입니다. 사이버 공격에 대한 보호 필요성이 그 어느 때보다 높아지는 상황에서, 인공지능 통합은 스토리지 서버에 다양한 보안 조치를 도입하여 기밀 정보의 원치 않는 침입을 차단할 수 있는 역량을 제공합니다.
모든 데이터 센터 인프라의 주요 요구 사항 중 하나는 저장 서버를 통한 에너지 흐름을 줄이고 운영상 필요성이 높은 서버에서 에너지 흐름을 늘려 효율성을 보상하지 않으면서 에너지를 보존하기 위한 최적의 솔루션을 갖추는 것입니다.
데이터 센터에서 AI의 또 다른 이점은 다양한 비즈니스 운영 요구 사항을 기반으로 예측 분석을 제공하여 스토리지 서버 최적화에 도움을 주고, 서버 다운타임 관련 분석까지 가능하게 한다는 것입니다. AI는 서버 내 문제 영역을 더욱 효과적으로 식별 및 격리하고, 사용자 사용량에 따라 유지 관리 기간을 계획하는 데 도움을 줄 수 있습니다. 또한, AI는 장비 및 다양한 구성 요소를 지속적으로 모니터링하여 IT 전문가의 업무를 대체할 수 있습니다. 따라서 AI는 다양한 IT 전문가의 인력 요구 사항과 교육 비용을 절감하는 데 도움이 될 수 있습니다.
데이터 센터에 AI가 없을 경우의 단점보다 AI의 이점이 훨씬 크지만, 상업적으로 대규모로 데이터 센터에서 AI를 최적화하는 것은 아직 상당히 먼 일이며, 그리 멀지 않은 미래에 데이터 센터의 다양한 운영을 최적화하는 이러한 추세가 현실이 되어 AI가 데이터 센터 산업을 지배하게 될 것입니다.
Data Bridge Market Research에서 발행한 " 글로벌 데이터 센터 자동화 소프트웨어 시장 " 보고서에는 데이터 센터 자동화와 관련된 다양한 시장 동향과 귀중한 통찰력이 포함되어 있습니다 . https://www.databridgemarketresearch.com/reports/global-data-center-automation-software-market