데이터 센터는 본질적으로 아웃소싱된 데이터 센터이기 때문에 IaaS(Infrastructure-as-a-Service) 성장의 촉매제가 빠르게 자리잡고 있습니다. IaaS 및 데이터 센터에 대한 개별 수요는 두 솔루션의 결합으로 충족되었습니다. 이러한 조합은 본질적으로 데이터 센터 서비스와 솔루션을 인프라 솔루션으로 제공하는 것을 의미합니다. 데이터 센터 건설과 서비스형 인프라의 주요 차이점은 기존에는 데이터 센터가 모든 장비, 구성 요소를 구성하고 건설을 위해 전문 인프라가 필요한 최종 사용자에 의해 건설되었다는 것입니다. 이를 위해서는 모든 합병증과 문제가 발생할 경우 이를 처리할 수 있을 만큼 충분히 숙련된 필수 IT 전문가를 모두 채용해야 합니다.
이러한 모든 서비스는 스토리지 및 인프라 용량 개선을 목표로 다양한 조직의 전제에 설치 및 통합됩니다. 이러한 온프레미스 데이터 센터 통합에는 다양한 인프라, 구성 요소 및 인력 요구 사항을 충족하기 위한 대규모 금융 자본이 필요합니다. 따라서 다양한 IT 서비스 제공업체에서는 이를 IaaS로 제공하기 위해 자체적으로 특화된 데이터센터를 구축하기 시작했습니다. 다양한 IT 제공업체가 제시하는 이 혁신적인 솔루션은 인프라 구축에 막대한 자본 지출을 들이지 않고도 데이터센터의 모든 이점을 활용할 수 있어 중소기업에게 비용 효율성이 매우 높습니다.
서비스 제공으로 데이터 센터를 사용할 수 있기 때문에 유지 관리 및 업그레이드 비용은 데이터 센터 운영 최적화를 담당하는 IT 제공업체에서 발생합니다. 이러한 유형의 서비스의 이점 중 하나는 다양한 IT 제공업체가 데이터 센터를 인공 지능과 통합하기 시작했으며 이는 매우 효과적인 전문 비즈니스 솔루션을 제공하는 능력에 큰 영향을 미쳤다는 것입니다. 인공 지능이 데이터 센터의 보안 조치를 강화하는 데 도움이 되므로 이러한 영향은 매우 긍정적이었습니다. 인공 지능의 통합은 사이버 공격에 대한 보호의 필요성이 사상 최고 수준에 도달함에 따라 다양한 보호 조치를 채택하여 기밀 정보에 대한 원치 않는 침입에 맞서 싸울 수 있는 기능을 스토리지 서버에 제공합니다.
모든 데이터 센터 인프라의 주요 요구 사항 중 하나는 많이 사용되지 않는 스토리지 서버를 통한 에너지 흐름을 줄이고 필요한 서버의 에너지 흐름을 늘려 효율성을 보상하지 않으면서 에너지 보존을 위한 최적의 솔루션을 갖추는 것입니다. 더 나은 냉각 메커니즘 작동이 필요합니다.
데이터 센터에서 AI의 또 다른 이점은 스토리지 서버의 최적화를 돕는 동시에 이러한 서버의 다운타임과 관련된 분석을 유도하는 다양한 비즈니스 운영 요구 사항을 기반으로 하는 예측 분석의 가용성입니다. AI는 서버에서 문제가 있는 영역을 더 잘 식별 및 격리하고 소비자 사용량에 따라 유지 관리 기간을 구성하는 데 도움을 줄 수 있습니다. 이는 또한 AI가 장비 및 다양한 구성 요소를 지속적으로 모니터링하여 IT 전문가의 업무 책임을 맡는다는 것을 의미합니다. 따라서 AI는 다양한 IT 전문가의 인력 요구 사항과 교육 비용을 줄이는 데 도움이 될 수 있습니다.
AI의 이점은 데이터 센터에 AI가 없다는 단점보다 훨씬 큽니다. 그러나 상업적으로 대규모 데이터 센터에서 AI의 실제 최적화는 아직 멀었고 그리 멀지 않은 미래에 다양한 운영을 최적화하는 이러한 추세가 나타날 것입니다. AI가 데이터센터 산업을 지배하게 될 데이터센터의 비율이 현실화될 것입니다.
데이터 센터 자동화에 관한 다양한 시장 동향과 귀중한 통찰력은 Data Bridge Market Research에서 발행한 보고서에서 다루고 있습니다.글로벌 데이터 센터 자동화 소프트웨어 시장": https://www.databridgemarketresearch.com/ko/reports/global-data-center-automation-software-market