概要
「ロボット工学における生成 AI」という用語は、ロボット システムの設計、最適化、制御における生成人工知能手法の使用を表します。これらの手法の例には、生成的敵対ネットワーク (GAN)、変分オートエンコーダー (VAE)、その他のディープラーニング モデルなどがあります。これらの手法により、ロボットはデータから学習し、斬新なアイデアを考案し、変化する環境に適応する能力を獲得し、適応性と効率性が向上します。
ロボット工学と生成 AI を組み合わせることで、ロボットが達成できることを大きく変えることができます。生成 AI 技術をロボット工学と融合させることで、ロボットの自律性を向上させ、人間の創造性を模倣し、適応型で教師なしの学習が可能になります。ロボット工学における生成人工知能のテーマは、継続的な研究と技術の発展により常に変化しています。医療、製造、パン焼き、金融機関など、さまざまな用途が考えられます。その影響は、顧客満足度と業務効率に表れます。政府、学術機関、企業が協力することで、倫理基準と法的枠組みが生成 AI の発展に追いつくことを保証し、責任ある有利な応用を実現できます。
図1: 生成AIロボティクス
ロボット工学で使用される生成AI手法の種類
- 生成的敵対ネットワーク (GAN): 敵対的トレーニングアプローチは、ジェネレータと識別器のニューラルネットワークを同時にトレーニングするために使用されます。識別器が本物のサンプルと生成されたサンプルを識別することを学習する一方で、ジェネレータは現実的なデータサンプルを生成することを学習します。GANは、ロボット工学で現実的なセンサーデータ、制御戦略、およびその他のシステムコンポーネントを生成するために利用できます。
- 変分オートエンコーダ (VAE): VAE は、データをそれぞれ低次元の異なるデータ空間にエンコードおよびデコードするようにトレーニングできる生成モデルの一種です。VAE は、センサーデータ、制御戦略、およびロボットシステムのその他の機能のコンパクトな表現を学習することで、ロボットの学習と最適化を改善する可能性があります。
- 強化学習 (RL): これは、エージェントが周囲との相互作用や報酬や罰則の形でのフィードバックを通じて意思決定スキルを獲得する機械学習の一種です。ロボット工学における制御ポリシー、経路計画、その他の意思決定タスクを学習するために、生成AIアプローチを強化学習と統合することができます。
- 進化的手法(EA): 自然選択は、このクラスの最適化手法のインスピレーションとなっています。ロボット工学における進化的アルゴリズム(EA)は、数世代にわたって潜在的なソリューションを繰り返し改善することで、ロボット部品、制御戦略、およびロボットシステムのその他の側面の設計を最適化するために利用できます。
図2: 生成AIロボティクスの利点
生成型AIロボットの導入時に直面する課題
生成 AI をロボットに統合する場合、考慮すべき点や障害が数多くあります。ロボット工学における生成 AI の適切かつ効率的な適用を保証するには、展開の問題、技術的な制約、倫理的な考慮事項を慎重に考慮する必要があります。
- 統合と展開の難しさ: 生成AIを現在のロボットシステムに組み込むのは困難な場合があります。生成AIは、さまざまな種類のハードウェアとソフトウェアで動作し、システムアーキテクチャ全体とシームレスに統合する必要があります。さらに、生成AIモデルを実際の設定でロボットに実装すると、処理能力、電力消費、リアルタイムの意思決定に関する問題が発生します。さらに、生成AIをロボットに組み込むと、人間とロボットのコミュニケーションと協力に関する疑問が生じます。ロボットが安全で信頼できる方法で人と対話し、作業できるようにするには、かなりの計画と検討が必要です。
- 不確実性と技術的制約: 生成AIには大きな可能性があるものの、まだ答えが出ていない疑問や技術的な制限がいくつかあります。真に独創的で革新的な作品を生み出す能力は、そのような難しさの1つです。生成AIモデルは驚くべき成果をもたらすことができますが、既存のデータのパターンやインスタンスに依存することがよくあります。真の創造性と革新性の追求は、依然として研究課題です。さらに、生成AIモデルの信頼性と回復力には疑問があります。重要な懸念は、悪意のあるパフォーマーがAIシステムを制御する敵対的攻撃です。ロボット工学における生成AIのセキュリティと整合性を確保するには、絶え間ない研究開発が必要です。これは、ロボット工学の重要な機能です。
- スケーラビリティ: 生成AIモデルを大規模なロボットシステムやリアルタイムアプリケーションに拡張することは、計算コストが高いため難しいかもしれない。
- データ要件: 特定のロボットアプリケーションでは、生成AIアルゴリズムを適切にトレーニングするために必要な膨大な量のデータを取得することが課題となる場合があります。
- 倫理への影響: ロボット工学における生成AIの使用には、重大な倫理的懸念があります。ますます自律的で洗練されたロボットによる決定が道徳的規範と価値観に準拠していることを確認することがますます重要になっています。意図しない影響や潜在的な危害を避けるために、説明責任、プライバシー、偏見などの問題を適切に処理することが重要です。開発者、学者、政治家が協力して、ロボット工学における生成AIの作成と適用に関する道徳基準を作成する必要があります。
これらの課題は克服可能であり、パートナーシップ、コラボレーション、合併、買収などのさまざまな戦略的決定を下して、研究に積極的に参加し、さまざまな関連企業と協力することで、生成 AI の倫理的かつ重要なロボット アプリケーションを作成することさえ可能です。
ロボット工学分野における生成AIの主な応用
- ロボット設計: コストと性能のバランスが取れた革新的な構成を作り出すことで、ジェネレーティブAIアプローチを適用して、関節、アクチュエータ、手足などのロボット部品の設計を最適化することができます。これにより、堅牢で効率的なロボットシステムが実現する可能性があります。
- ロボットの動作の計画と制御: 生成 AI の重要な影響は、ロボットの動作計画と制御にも及びます。ロボットは、大規模なデータセットから学習できるため、効率と安全性の両方に最適化された動作計画を作成できます。ロボットは、生成アルゴリズムを利用してさまざまな現実的な動作軌道を作成でき、困難な状況を正確にナビゲートするのに役立ちます。これは、ロボットが混雑した場所を移動し、人や他の物体と通信する必要がある、物流や倉庫の自動化などのアプリケーションに特に役立ちます。
- コラボレーションと人間とロボットのインタラクション: 生成型AIを使用すると、人間とロボットの相互作用とコラボレーションが改善され、よりインテリジェントで人間が操作できるロボットが実現します。生成型AIアプローチを使用することで、ロボットは本物の人間のような行動をするように訓練することができ、人とのスムーズなコミュニケーションと協力が可能になります。たとえば、ユーザーと自然に会話し、カスタマイズされたヘルプとサポートを提供できるチャットボットや仮想アシスタントは、生成型AIを使用して作成できます。
これらの用途以外にも、生成 AI は、産業、医療、金融、教育など、他の多くの分野に革命を起こす可能性を秘めています。生成 AI の発展と進歩により、ロボットは困難な仕事をこなし、変化する環境に適応し、人々とより有意義に関わることができるようになるかもしれません。
- テストとシミュレーション: エンジニアは、設計を展開する前に、生成AIモデルを使用して作成されたロボットシステムとその設定の現実的なシミュレーションを使用して、設計をテストして改善することができます。これにより、開発の時間と費用を短縮できると同時に、ロボットシステムの信頼性も向上します。生成アルゴリズムは、ロボットの動きを指示するシステムに取り入れられる可能性があります。iPhoneのビデオ映像からタスクを学習するロボットDobb-Eは、その初期の例の1つです。
- ロボットのセンシングと知覚: ロボット工学は、その知覚と感知能力を向上させるために、生成AIに大きく依存しています。生成モデリングと生成敵対ネットワーク(GAN)を使用することで、ロボットは現実世界のセンサー入力を再現する人工データを生成するように訓練することができます。ロボットは、この人工データを使用して知覚アルゴリズムを訓練および強化することで、周囲の状況をよりよく理解することができます。たとえば、生成AIは、自動運転車の物体検出および認識システムの精度を向上させ、信頼性と安全性を高めるのに役立ちます。
近年、AI ベースのチャットボットによる顧客体験の向上に対するニーズが高まっているため、世界のチャットボット市場は大幅な成長を遂げています。さらに、ロボットにおける生成 AI の利用の増加や、人間のような会話体験を実現する自己学習型ロボットの構築に向けた取り組みの増加も、今後数年間の成長を促進する要因となっています。データ ブリッジ マーケット リサーチの分析によると、世界のチャットボット市場は、2021 年から 2029 年にかけて 22.10% の複合年間成長率 (CAGR) で成長すると予測されています。
この研究の詳細については、以下をご覧ください。https://www.databridgemarketresearch.com/jp/reports/global-chatbots-market
ロボット工学分野における生成 AI に関連する事例は次のとおりです。
- 2024年2月、アマゾンのロボット労働力拡大の次の段階が明らかになった。同社によると、倉庫のさまざまな場所のロボットを接続して単一の自律チームを形成する新しいセキオアシステムにより、運用効率が大幅に向上したという。ロボット工学と自動化は、生成AIのおかげで大きな可能性を秘めている。その結果、このテクノロジーの巨人は現在、より高度なロボットのための資金を調達しようとしている。同社の産業イノベーション基金は、ロボット工学とAIに重点を置く企業への投資を加速させるだろう。
- 2023年11月、GoogleのDeepMindは、33の学術機関と提携して開発されたロボット機能データベースであるOpen X-Embodimentを発表しました。研究者は、この方法を、2009年に設立され、現在1,400万枚以上の写真を収容している歴史的なデータベースであるImageNetと比較しました。Open X-Embodimentを作成するために、22のロボットの具体化から500以上の才能と15万のアクティビティが収集されました。社内の技術と比較して、DeepMindは、データを使用してRT-1-Xモデルをトレーニングした場合の成功率が50%であると報告しました。その後、このモデルは他の研究室のロボットのトレーニングに使用されました。間違いなく、AI(特に生成型)とシミュレーションがこの分野で大きな役割を果たしています。
- 2023年10月、MITの研究者らは、荷物の積み重ね、車のバンパーとロボットアームの衝突、軽い製品の上に重い物を置くことなど、梱包の問題をより効果的に処理するために、生成AIの一種である拡散モデルを採用した。彼らの方法論では、それぞれが特定の種類の制約を表すように訓練された一連の機械学習モデルが使用されている。これらのモデルを組み合わせることで、梱包問題に対してすべての制約を同時に考慮したグローバルソリューションが生成される。
ジェネレーティブAIロボットのトップトレンド
図3: ジェネレーティブAIロボットの最新動向
- 自律型ロボット: 人間による継続的な監視なしにタスクを実行できるロボットは、自律型ロボットとして知られています。これらのロボットは、センサーとアルゴリズムを使用して自分で移動し、決定を下します。効率と安全性を向上させるため、製造業や物流業を含むさまざまな業界でますます重要になっています。自律型ロボットは、危険な活動や反復的な活動を処理できるため、人間はより複雑な責任に集中できます。自動運転車とドローンは、AI 搭載ロボットがどのように進化したかを示す 2 つの例にすぎません。その他の進歩には、機械学習トレーニング モデル、コンテンツ作成、画像生成、医薬品の発見、音楽生成ツール、コード生成、マルチモーダル人工知能アプリケーション、ジェネレーティブ広告ネットワークなどがあります。
- デジタルツイン: ロボット工学と生成AIの分野で非常に価値のあるトレンドは、デジタルツイン技術です。実際の物体またはシステムの仮想レプリカまたはシミュレーションは、デジタルツインと呼ばれます。これは、実際のロボットの特性、相互作用、および動作を模倣するロボット工学の分野でデジタル対応物を開発するプロセスを指します。洗練されたデジタルツインを開発するには、現実世界のシナリオを動的にシミュレートし、変化する環境に適応できる生成AIを使用する必要があります。この技術により、エンジニアと開発者は、ロボットシステムを実装する前にデジタルで最適化およびトラブルシューティングできるようになり、設計プロセスの効率化、開発コストの削減、およびロボットデバイスの全体的なパフォーマンスの向上につながります。生成AIとデジタルツインの組み合わせは、さまざまなアプリケーションでの精度、適応性、信頼性を向上させることで、ロボット業界に革命をもたらしています。
- NLPの開発: NLP の進歩には、人間の言語に対する機械の理解と応答の強化が含まれます。このテクノロジーは、人間と機械のシームレスなコミュニケーションを可能にすることで、チャットボット、仮想アシスタント、言語翻訳ツールなど、多くのアプリケーションに影響を与えます。さらに、強化された自然言語処理 (NLP) により、機械は言語の文脈、感情、ニュアンスを理解できるようになり、人間と機械の協力が促進されます。さらに、この傾向はユーザー エクスペリエンスを向上させるだけでなく、人間のようなテキストを解釈して生成できる高度な AI システムの作成を促進し、自然な人間と機械のコミュニケーションに近づきます。さらに、自然言語処理 (NLP) の進歩により、コンピューターが人間の言語や知性を理解して対話する能力が向上し、リアルな画像を作成することで、より直感的でユーザー フレンドリーな AI 搭載システムが実現します。
- 合成音声: 生成型 AI ロボット工学の人気のトレンドは音声合成で、ロボットにリアルで自然な音声を提供することを目指しています。このようなテクノロジーにより、機械が人間と効果的に対話できるようになり、ユーザー エクスペリエンスが向上し、人間とロボットの対話が可能になります。高度な自然言語処理とディープラーニング技術により、ロボットは話し言葉を理解し、表現力豊かでイントネーションに富んだ応答を生成できます。その結果、対話はより面白く、共感できるものになります。このトレンドは、パーソナライズされたロボットから高齢者の付き添い人まで、幅広い用途に応用できます。明確で表現力豊かなコミュニケーションは、信頼関係を築くために不可欠です。
- 3次元(3D)生成: AI はロボット工学による 3D 生成の分野で大きな進歩を遂げています。これには、人工知能を使用して 3 次元の仮想モデルまたは環境を作成することが含まれます。これらのモデルは、複雑な構造の設計、仮想現実体験の改善、ロボット システムのトレーニング用の現実的なシナリオのモデリングなど、さまざまなタスクに適用できます。コンピューター支援設計、シミュレーション、仮想プロトタイピングなどの高度な分野では、リアルで複雑な 3D マテリアルの作成を容易にする生成アルゴリズムの開発が役立っています。このテクノロジは、複雑な空間データの理解と視覚化を向上させることで、よりリアルで没入感のあるデジタル空間でのロボット システムの開発とテストに役立ちます。
倉庫の自動化とラストマイルの迅速な配送に対する需要の高まりにより、世界の自律型ロボット市場は大幅な成長を遂げています。データブリッジ市場調査の分析によると、世界の自律型ロボット市場は2022年から2030年にかけて年平均成長率(CAGR)19.70%で成長すると予測されています。
この研究の詳細については、以下をご覧ください。https://www.databridgemarketresearch.com/jp/reports/global-autonomous-robot-market
生成型AIロボットの今後の展望
ロボット工学における生成 AI には、刺激的な機会が待っています。この分野での発展と進歩により、さまざまな業界で革新的なアプリケーションへの扉が開かれています。
- さまざまな分野への影響の可能性 ロボットにおける生成 AI は、多くの業界に大きな影響を与えると予想されています。たとえば、ヘルスケアにおける生成 AI は、診断や治療計画に役立つ人工画像を作成することで、医療用画像処理に役立ちます。生成 AI は、斬新で創造的なソリューションを作成することで、製造業における業務と設計を最適化する可能性があります。生成 AI は、エンターテイメント分野でインタラクティブでパーソナライズされたエクスペリエンスを生み出すために使用できます。
- 技術革新と進歩: ロボット工学における生成型人工知能のテーマは、継続的な研究と技術の発展により常に変化しています。生成型 AI モデルの能力を向上させるために、研究者は新しいアプローチと方法を研究しています。これには、生成型ディープラーニング、生成型敵対ネットワーク (GAN)、生成型モデリングの開発が含まれます。
これらの開発の結果、より複雑で現実的な生成 AI モデルが開発されると思われます。その結果、ロボットはより複雑で想像力豊かな作業を行うことができ、効率性と汎用性が向上します。さらに、生成アルゴリズムは、ロボット システムが意思決定や問題解決をより上手に行えるようにするのに役立ちます。
- さまざまな企業や政府機関間のコラボレーションの機会: ロボット工学における生成 AI が発展するにつれ、創造性を育み、この技術の可能性を最大限に引き出すにはチームワークが不可欠になります。組織は、この分野の研究者や専門家と協力することで、挑戦的なタスクに取り組み、生成 AI の限界を押し広げることができます。コラボレーションは、業界を超えた提携の形をとることもできます。この提携では、多くの分野の代表者が集まり、ロボット工学における生成 AI の潜在的な用途を調査できます。複数の分野の知識を組み合わせたこの学際的なアプローチは、イノベーションと新しいアイデアを刺激することができます。
ヘルスケア市場における世界の生成AIは、さまざまな企業間のコラボレーションの増加、技術の進歩の加速、医療画像の強化への注目の高まりなど、いくつかの要因により、近年著しい成長を遂げています。データブリッジ市場調査の分析によると、ヘルスケア市場における世界の生成AIの市場は、2023年から2031年にかけて32.60%の複合年間成長率(CAGR)で成長すると予測されています。
この研究の詳細については、以下をご覧ください。https://www.databridgemarketresearch.com/jp/reports/global-generative-ai-in-healthcare-market
以下は、ロボットにおける生成 AI の今後の機会に関連するいくつかの例です。
- 2024年3月、Nvidia Corporationは、人間に似たロボットを作成するための生成AI機能を備えたハードウェアおよびソフトウェアプラットフォームを開発しました。新しいプラットフォームは、ロボットと人工知能(AI)を動かすコンピュータシステムと、genAIなどのソフトウェアツールスイートで構成され、人間そっくりのロボットの作成を可能にします。genAIの組み込みにより、ヒューマノイドロボットは、言語、ビデオ、「人間のデモンストレーション」、および以前の経験を組み合わせて入力に基づいて行動できるようになります。
- 2024年3月、アマゾン ウェブ サービス (AWS) と NVIDIA コーポレーションは、AWS がまもなく新しい NVIDIA Blackwell GPU プラットフォームを提供する予定であると発表しました。このプラットフォームは、GTC 2024 で NVIDIA が発表したものです。AWS は、顧客が新しい生成型人工知能 (AI) 機能を活用できるように、NVIDIA GB200 Grace Blackwell スーパーチップと B100 Tensor Core GPU を提供し、長年にわたる戦略的コラボレーションを拡大します。両社は協力して、最も先進的で安全なインフラストラクチャ、ソフトウェア、サービスを提供します。
- 2024年1月、Nvidia CorporationとそのパートナーであるBoston Dynamics、Sanctuary AI、Covariant、Unitree Robotics、Collaborative Roboticsなどが、ラスベガスで開催されたCES 2024で、生成AIとロボティクスを融合させる最新のパートナーシップと発明を発表しました。自動車パートナーのリストによって、車両のエンジニアリング、パフォーマンス、設計におけるAIの革命的な可能性を示す多くの最先端技術が展示されました。自動車業界では、生成AIとソフトウェア定義コンピューティングの急速な導入が見られ、来年には運転を完全に変えると予想されるブレークスルーを促進しています。
結論
2024年までに、遺伝子工学による人工知能ロボットの分野は大幅に進歩し、過去よりも速いスピードで産業に革命を起こすでしょう。ロボット工学と人工知能の組み合わせは、日常生活と産業に革命を起こし、幅広い機会を切り開きました。私たちがジェネレーティブAIロボティクスの発展の展望を辿っていくと、人工知能とロボット工学の協力により、インテリジェントマシンが人間と共存し、創造的なソリューションを提供し、日常の体験を向上させる世界が作られているという証拠があります。