概要
現在、データの保存時または転送時に暗号化することは一般的な方法ですが、使用中のデータ、特にメモリ内のデータの暗号化はしばしば無視されています。さらに、従来のコンピューティング インフラストラクチャには、アクティブに使用されているデータやコードを保護するための堅牢なメカニズムがありません。これは、個人識別情報 (PII)、財務データ、健康記録などの機密情報を扱う組織にとって課題となります。なぜなら、アプリケーションとシステム メモリ内に存在するデータの両方の機密性と整合性を危険にさらす可能性のある潜在的な脅威に対処する必要があるからです。機密コンピューティングは、ハードウェア ベースの証明された Trusted Execution Environment で計算を実行することにより、使用中のデータを保護します。安全で分離された環境を確立することにより、組織は機密データや規制対象データを含む業務のセキュリティを効果的に強化できます。これらの制御された環境により、アクティブに使用されているアプリケーションやデータへの不正アクセスや変更が防止されます。その結果、これらの組織の全体的なセキュリティ体制が大幅に向上します。
導入
コンピューティングには、転送中、保存中、使用中という 3 つの異なるデータ状態が含まれます。データがネットワークをアクティブに移動しているときは、「転送中」と見なされます。保存されていてアクティブにアクセスされていないデータは、「保存中」と呼ばれます。最後に、処理中または利用中のデータは、「使用中」に分類されます。機密データの保存、使用、共有が一般的になっている現代では、あらゆる状態でそのようなデータを保護することがますます重要になっています。これは、クレジットカード データ、医療記録、ファイアウォール構成、さらには地理位置情報データなど、さまざまな機密情報に関係します。暗号化は現在、データの機密性 (不正な閲覧の防止) とデータの整合性 (不正な変更の防止または検出) の両方を提供するために一般的に導入されています。転送中および保存中のデータを保護する技術は現在一般的に導入されていますが、3 番目の状態である使用中のデータの保護は新しい領域です。
保護されていない「使用中」のデータのセキュリティリスク
ネットワークやストレージ デバイスに対する脅威ベクトルが、転送中および保存中のデータに適用される保護によってますます阻止されるようになるにつれて、攻撃者は使用中のデータを標的にするようになりました。業界では、Target の侵害などのいくつかの注目度の高いメモリ スクレイピングや、この第 3 の状態への注目度を大幅に高めた CPU サイド チャネル攻撃、および Triton 攻撃やウクライナ電力網攻撃などのマルウェア インジェクションを伴ういくつかの注目度の高い攻撃が見られました。
高度なマルウェア対策は、インテリジェンスを活用した、エンタープライズクラスの高度なマルウェア分析および対策ソリューションの一種です。また、セキュリティチームには、攻撃や連携を迅速に検出し、マルウェアが被害を引き起こす前に制御するために必要な、高度な可視性と制御レベルが提供されます。Data Bridge Market Researchが実施した分析によると、高度なマルウェア対策の市場規模は2028年までに89億117万米ドルに達し、2021年から2028年の予測期間中に14.30%の複合年間成長率で成長すると予想されています。高度なマルウェア対策に関するData Bridge Market Researchレポートでは、予測期間を通じて普及すると予想されるさまざまな要因に関する分析と洞察を提供し、市場の成長への影響を示しています。
https://www.databridgemarketresearch.com/jp/reports/global-advanced-malware-protection-market
モバイル、エッジ、IoT デバイスに保存され、処理されるデータの量が増え続けるにつれて、実行中のデータとアプリケーションのセキュリティを確保することがますます重要になっています。これらのデバイスは、多くの場合、遠隔地の厳しい環境で動作するため、セキュリティを維持することが困難です。さらに、モバイル デバイスに保存される情報の個人情報の性質を考慮すると、メーカーとモバイル オペレーティング システム プロバイダーは、個人データが保護され、共有および処理中にデバイス ベンダーや第三者がアクセスできないことを実証する必要があります。これらの保護は、規制要件に準拠している必要があります。インフラストラクチャを制御できる状況でも、使用中の最も機密性の高いデータを保護することは、堅牢な多層防御戦略の不可欠な要素です。
Confidential Computing は、ハードウェア ベースの Trusted Execution Environment (TEE) を活用して、アクティブな使用中にデータを保護します。Confidential Computing を導入することで、前述の脅威の多くを効果的に軽減できます。Trusted Execution Environment (TEE) は、データの整合性、データの機密性、コードの整合性に関して高いレベルの保証を保証する環境です。ハードウェア ベースの技術を利用することで、TEE は環境内でのコードの実行とデータの保護に対するセキュリティ保証を強化します。
機密コンピューティングのコンテキストでは、不正なエンティティには、ホスト上の他のアプリケーション、ホスト オペレーティング システム、ハイパーバイザ、システム管理者、サービス プロバイダ、インフラストラクチャ所有者、およびハードウェアに物理的にアクセスできるすべてのユーザーが含まれます。データの機密性により、これらの不正なエンティティは、Trusted Execution Environment (TEE) 内でデータが使用されている間は、そのデータにアクセスできません。データの整合性により、TEE 外部のエンティティによる処理中に、データが不正に変更されることを防止できます。コードの整合性により、不正なエンティティは TEE 内のコードを置き換えたり変更したりできません。これらの属性を総合すると、データの機密性を保証するだけでなく、計算の正確性も保証し、計算結果に信頼を植え付けます。このレベルの保証は、ハードウェア ベースの TEE を使用しないアプローチでは、多くの場合欠如しています。
次の表は、一般的なTEE実装と、使用中のデータを保護する他の2つの新しいソリューションである準同型暗号化(HE)とトラステッドプラットフォームモジュール(TPM)の一般的な実装を比較したものです。
表1 - 機密コンピューティングとHEおよびTPMのセキュリティ特性の比較
|
HWティー
|
準同型暗号
|
TPPMについて
|
データの整合性
|
そして
|
Y (コードの整合性に従う)
|
キーのみ
|
データの機密性
|
そして
|
そして
|
キーのみ
|
コードの整合性
|
そして
|
いいえ
|
そして
|
コードの機密性
|
Y (作業が必要な場合があります)
|
いいえ
|
そして
|
認証された起動
|
不定
|
いいえ
|
いいえ
|
プログラミング可能性
|
そして
|
部分的(「回路」)
|
いいえ
|
証明可能性
|
そして
|
いいえ
|
そして
|
回復可能性
|
そして
|
いいえ
|
そして
|
信頼できる実行環境 (TEE)
CCC (業界の一般的な慣行に従う) によれば、信頼できる実行環境 (TEE) は、次の 3 つの重要な特性によって特徴付けられます。
図 - 信頼できる実行環境 (TEE) の特徴
不正なエンティティには、ホスト上の他のアプリケーション、ホスト オペレーティング システムとハイパーバイザー、システム管理者、サービス プロバイダー、インフラストラクチャ所有者、ハードウェアに物理的にアクセスするその他のユーザーなど、さまざまなアクターが含まれます。これらのプロパティにより、TEE 内で実行される計算のデータの機密性と精度の両方が総合的に保証され、計算結果に対する信頼性が高まります。
さらに、特定の TEE 実装に応じて、次のような追加機能が提供される場合があります。
ハードウェア ベースの TEE は、ハードウェア ベースの技術を活用して、TEE 内でのコード実行とデータ保護のセキュリティ保証を強化します。このレベルの保証は、ハードウェア ベースの TEE に依存しないアプローチでは実現されないことがよくあります。
機密コンピューティングの利点
機密コンピューティングは、データのプライバシーとセキュリティに関心のある組織に多くの利点をもたらします。
図 - 機密コンピューティングの利点
機密コンピューティングの実装
機密コンピューティングを実装するには、慎重な計画と検討が必要です。
次の表は、従来のコンピューティング、一般的なハードウェアベースの TEE を使用したコンピューティング、準同型暗号化のさまざまなメトリックにおけるスケーラビリティの比較を示しています。セキュリティの比較と同様に、実際の回答はベンダー、モデル、またはアルゴリズムによって異なる場合があります。
表 2 - 機密コンピューティングと HE および TPM のスケーラビリティ特性の比較
プロパティ
|
ネイティブ
|
HWティー
|
準同型暗号
|
データサイズの制限
|
高い
|
中くらい
|
低い
|
計算速度
|
高い
|
高中
|
低い
|
マシン間でスケールアウト
|
はい
|
さらなる仕事
|
はい
|
セット間でデータを結合する機能 (MPC)
|
はい
|
はい
|
非常に限定的
|
実装における課題
機密コンピューティングは大きなメリットをもたらしますが、組織はそれを実装する際にいくつかの課題に対処する必要があります。
主な戦略
Intel が新たな機密コンピューティング イニシアチブを発表。Intel は 2023 年 1 月 25 日に、いくつかの新たな機密コンピューティング イニシアチブを発表しました。これらのイニシアチブには次のものが含まれます。
Google が Confidential Cloud Platform を発表。Google は 2023 年 2 月 1 日に Confidential Cloud Platform の一般提供を発表しました。Confidential Cloud Platform は、組織がクラウド内の機密データを保護するのに役立つ一連のサービスです。これらのサービスには次のものが含まれます。
Microsoft が Azure 向け Confidential Computing を発表。Microsoft は、2023 年 2 月 3 日に Azure に Confidential Computing を導入すると発表しました。Azure 向け Confidential Computing は、組織がクラウド内の機密データを保護するのに役立つ一連のサービスです。これらのサービスには次のものが含まれます。
これらは、機密コンピューティングに関連して最近発表された主要な戦略的取り組みのいくつかの例です。これらの取り組みは、組織が機密コンピューティング技術を採用し、クラウド内の機密データを保護できるように設計されています。
実際の使用例
機密コンピューティングはさまざまな業界で実際に応用されており、組織は機密データを保護し、プライバシーを確保することができます。
図 - 実際のユースケース
キー、シークレット、資格情報、トークンの保存と処理:
暗号キー、シークレット、資格情報、トークンは、機密データの保護を担当する組織にとって「王国への鍵」です。従来、オンプレミスのハードウェア セキュリティ モジュール (HSM) は、セキュリティ標準に準拠し、これらの資産のセキュリティを確保するために使用されていました。しかし、従来の HSM は独自仕様であるため、スケーラビリティとクラウドおよびエッジ コンピューティング環境との互換性が制限され、コストの増加と導入の課題が生じていました。コンフィデンシャル コンピューティングは、オンプレミス、パブリック/ハイブリッド クラウド、さらには IoT ユース ケースのネットワーク エッジで利用可能な標準化されたコンピューティング インフラストラクチャを利用することで、これらの制限に対処します。独立系ソフトウェア ベンダー (ISV) や大規模な組織は、暗号情報や秘密情報を安全に保存および処理するために、すでにコンフィデンシャル コンピューティングを採用しています。キー管理アプリケーションは、ハードウェア ベースの信頼できる実行環境 (TEE) を活用してこれらの資産を保存および処理し、データの機密性、整合性、およびコードの整合性を確保します。コンフィデンシャル コンピューティングによって実現されるセキュリティは、従来の HSM に匹敵し、機密情報を保存および処理するためのよりスケーラブルでコスト効率の高いソリューションを提供します。
パブリッククラウドのユースケース:
従来のパブリック クラウド環境では、信頼はクラウド プロバイダーのインフラストラクチャ内の複数のレイヤーに置かれます。Confidential Computing は、エンド ユーザーが信頼する必要があるレイヤーの数を減らすことで、追加の保護保証を導入します。ハードウェア ベースの Trusted Execution Environment (TEE) が使用中のアプリケーションとデータを保護するため、権限のないアクターは、物理的アクセスまたは特権アクセスであっても、保護されたアプリケーション コードとデータにアクセスするのが困難になります。Confidential Computing は、クラウド プロバイダーを Trusted Computing Base から排除し、これまでセキュリティ上の懸念やコンプライアンス要件によって制限されていたワークロードをパブリック クラウドに安全に移行できるようにすることを目的としています。
マルチパーティコンピューティング
複数の当事者間でデータと処理能力を共有できる新しいコンピューティングパラダイムが登場するにつれて、機密データや規制対象データの機密性と整合性を確保することが非常に重要になります。Confidential Computing は、信頼できないプラットフォーム間でもプライバシーを侵害することなく、組織がデータを安全に共有および分析するためのソリューションを提供します。プライベートなマルチパーティ分析は、金融サービス、ヘルスケア、政府などのさまざまな分野に適用でき、基礎となるデータや機械学習モデルを公開することなく、プライベートデータを組み合わせて分析できます。Confidential Computing を使用すると、内部の脅威による改ざんや侵害からもデータが保護されるため、安全なコラボレーションが確保され、セキュリティ、プライバシー、規制のリスクを軽減しながら、グローバルなデータ共有の可能性が広がります。
ブロックチェーン
ブロックチェーンは、中央集権的な機関を必要とせずにトランザクションを記録し検証するための不変の台帳を提供します。透明性とデータの一貫性を提供する一方で、不変のブロックチェーンに機密データを保存するとプライバシーの問題が生じます。Confidential Computing は、ハードウェアベースの Trusted Execution Environment (TEE) を活用してブロックチェーンの実装を強化できます。TEE を使用すると、ユーザーはスマート コントラクトを安全に実行でき、データのプライバシー、スケーラビリティ、検証の最適化が保証されます。TEE ベースの認証サービスはトランザクションの信頼性証明を提供し、各参加者が履歴データを個別に検証する必要がなくなります。さらに、Confidential Computing は、ブロックチェーン システムのコンセンサス プロトコルに関連する計算および通信の非効率性に対処します。
モバイルおよびパーソナルコンピューティングデバイス
クライアント デバイスでの機密コンピューティングは、データのプライバシーと整合性を保証するユース ケースを提供します。アプリケーション開発者とデバイス メーカーは、個人データが共有または処理中に観察可能にならないようにして、メーカーの責任をなくすことができます。信頼できる実行環境 (TEE) により、機能の正確性の形式検証が可能になり、開発者はユーザー データがデバイスから出ていないことを証明できます。たとえば、継続的な認証の実装は TEE 内で動作し、機密性の高い生体認証や行動データを公開することなくユーザーを識別できます。同様に、分散型のデバイス上のモデル トレーニングにより、モデルを改善し、トレーニング データを漏らすことなく改善を共有できます。ハードウェア ベースの TEE での相互認証を通じて、ユーザー制御のポリシーと制約を提供します。
エッジと IoT のユースケース:
機密コンピューティングは、データのプライバシーとセキュリティが最も重要であるエッジおよび IoT 環境で貴重なユースケースとなります。たとえば、DDoS 検出のためのホーム ルーター内でのローカル検索やフィルタリングなどのシナリオでは、機密コンピューティング環境は TCP/IP パケット メタデータから推測される機密性の高いユーザー行動を保護できます。その他の例としては、遅延を減らすためのビデオ メタデータ生成、関心のある人物のテンプレートを使用した CCTV カメラ監視、デバイス上のトレーニング モデルなどのエッジ機密機械学習処理があります。機密コンピューティング テクノロジーは、信頼できない当事者が物理的にアクセスできる可能性がある環境で、デバイスへの物理的アクセスを悪用する攻撃を軽減するのにも役立ちます。
記録のデータ収集、つまり暗号を使用してリンクされた技術データベースは、ブロックチェーンと呼ばれます。世界的に拡大している国境を越えた貿易業務は、この技術の需要を高めると予測されています。データブリッジマーケットリサーチは、2022年に100.2億ドルと評価されたブロックチェーン市場は、2030年には7,661億ドルに達し、2023年から2030年の予測期間中に71.96%のCAGRで成長すると分析しています。暗号通貨が法律で認められたことで、企業や投資家はブロックチェーン技術への投資を増やすよう動機付けられています。さらに、ブロックチェーン技術は、まもなく企業の取り組みにおいてより効果的かつ効率的になると予想されています。DeFiは、銀行による金融サービスと資金の管理を緩和する、ブロックチェーンベースの新しい金融技術です。予測期間を通じて、分散型金融分野での戦略的イニシアチブの増加により、市場の成長が見込まれます。
今後の動向と方向性
機密コンピューティングの分野は急速に進化しており、いくつかの将来の傾向と方向性が特定できます。
結論
Confidential Computing は、信頼できない環境で処理中に機密データを保護するための画期的なアプローチを提供します。データ分離、セキュア エンクレーブ、認証、暗号化、信頼の前提の最小化などの原則を組み合わせることで、組織はデータの機密性と整合性を確保できます。パフォーマンス、キー管理、レガシー システム、アプリケーションの移植性に関する課題はありますが、Confidential Computing を実装するメリットは大きいです。実際の使用事例では、医療、金融、エッジ コンピューティング、クラウド コンピューティングでその価値が実証されています。ベスト プラクティスに従い、将来の傾向を考慮することで、組織は Confidential Computing を採用して機密データを保護し、相互接続が進む世界でプライバシーを保護できます。
DBMRは、世界的にフォーチュン500企業の40%以上にサービスを提供しており、5000社を超えるクライアントのネットワークを持っています。当社のチームは、お客様のご質問に喜んでお答えします。 https://www.databridgemarketresearch.com/jp/contact
お問い合わせサイバーセキュリティ: オンラインでのユーザーデータの保護
サイバーセキュリティ: オンラインでのユーザーデータの保護
サイバーセキュリティ: オンラインでのユーザーデータの保護
サイバーセキュリティ: オンラインでのユーザーデータの保護
サイバーセキュリティ: オンラインでのユーザーデータの保護