グローバルデータサイエンスプラットフォーム市場の規模、シェア、トレンド分析レポート – 業界の概要と2031年までの予測

Request for TOC TOC のリクエスト Speak to Analyst アナリストに相談する Free Sample Report 無料サンプルレポート Inquire Before Buying 事前に問い合わせる Buy Now今すぐ購入

グローバルデータサイエンスプラットフォーム市場の規模、シェア、トレンド分析レポート – 業界の概要と2031年までの予測

  • ICT
  • Upcoming Report
  • Oct 2024
  • Global
  • 350 ページ
  • テーブル数: 220
  • 図の数: 60

グローバルデータサイエンスプラットフォーム市場の規模、シェア、トレンド分析レポート

Market Size in USD Billion

CAGR :  % Diagram

Chart Image USD 158.59 Billion USD 1,216.19 Billion 2023 2031
Diagram 予測期間
2024 –2031
Diagram 市場規模(基準年)
USD 158.59 Billion
Diagram Market Size (Forecast Year)
USD 1,216.19 Billion
Diagram CAGR
%
Diagram Major Markets Players
  • List provided in description

グローバルデータサイエンスプラットフォーム市場のセグメンテーション、コンポーネントタイプ別(プラットフォーム、サービス、サポートとメンテナンス、コンサルティング、展開と統合)、機能部門別(マーケティング、販売、物流、財務と会計、顧客サポート、ビジネスオペレーション、その他)、展開モデル別(オンプレミスとクラウドベース)、組織規模別(中小企業(SME)、大企業)、エンドユーザーアプリケーション別(銀行、金融サービス、保険(BFSI)、通信とIT、小売と電子商取引、ヘルスケアとライフサイエンス、製造、エネルギーと公共事業、メディアとエンターテイメント、運輸と物流、政府、その他)– 2031年までの業界動向と予測

データサイエンスプラットフォーム市場

データサイエンスプラットフォーム市場分析

データサイエンス プラットフォーム市場は、人工知能(AI)、機械学習 (ML)、クラウド コンピューティングなどの高度なテクノロジーの統合により、急速な成長を遂げています。市場を牽引する最新の方法の 1 つは、モデル作成プロセスを簡素化し、専門知識の少ない企業でも AI を効果的に活用できるようにする AutoML (自動機械学習) ツールの使用です。これらのプラットフォームにより、データ サイエンティストはイノベーションに集中でき、自動化によって反復的なタスクが処理されます。

Google Cloud AI や AWS SageMaker などのクラウドベースのデータサイエンス プラットフォームは、スケーラビリティとコスト効率をさらに高めます。クラウドを利用することで、企業はオンデマンドで膨大な計算能力にアクセスでき、膨大なデータセットを迅速に処理できるようになります。

もう 1 つの進歩は、チームが同時にプロジェクトに取り組むことを可能にするコラボレーション ツールの導入です。これにより、効率が向上し、AI ソリューションの市場投入までの時間が短縮されます。これらのプラットフォームは既存のデータ エコシステムと統合されることが多く、医療、金融、小売などの幅広い業界で利用できます。組織がデータ主導の洞察の価値を認識するにつれて、包括的なデータ サイエンス プラットフォームの需要が大幅に高まり、市場の成長を促進すると予想されます。

データサイエンスプラットフォーム市場規模

世界のデータサイエンスプラットフォーム市場規模は、2023年に1,585.9億米ドルと評価され、2024年から2031年の予測期間中に29.00%のCAGRで成長し、2031年までに1兆2,161.9億米ドルに達すると予測されています。市場価値、成長率、市場セグメント、地理的範囲、市場プレーヤー、市場シナリオなどの市場洞察に加えて、データブリッジ市場調査チームがまとめた市場レポートには、詳細な専門家分析、輸入/輸出分析、価格分析、生産消費分析、ペストル分析が含まれています。

データサイエンスプラットフォーム市場の動向

「自動機械学習(AutoML)の台頭」

データサイエンスプラットフォーム市場の成長を牽引する重要なトレンドの1つは、自動機械学習(AutoML)の台頭です。このテクノロジーは、モデル開発プロセスを簡素化および加速し、データサイエンスの専門知識が限られているユーザーでも予測モデルを構築できるようにします。たとえば、2023年1月、Science Applications International Corp.は、AIおよび機械学習アプリケーションのローコードからフルコード開発をサポートする多目的ソリューションである「Tenjin」データサイエンスプラットフォームを発表しました。Dataikuを搭載したTenjinは、高度なデータ視覚化ツールとともに、展開からトレーニング、自動化まで、AIおよびMLモデル開発のライフサイクル全体を促進します。このプラットフォームは、複雑なプロセスを簡素化し、より幅広いビジネスでAIを利用できるようにすることを目指しています。

レポートの範囲とデータサイエンスプラットフォーム市場のセグメンテーション       

属性

データサイエンスプラットフォームの主要市場分析

対象セグメント

  • コンポーネントタイプ別:プラットフォーム、サービス、サポートとメンテナンス、コンサルティング、導入と統合
  • 機能別部門:マーケティング、営業、物流、財務・経理、顧客サポート、事業運営、その他
  • 導入モデル別:オンプレミスとクラウドベース
  •  組織規模: 中小企業、大企業
  • エンドユーザーアプリケーション別:銀行、金融サービス、保険 (BFSI)、通信および IT、小売および電子商取引、ヘルスケアおよびライフサイエンス、製造、エネルギーおよび公共事業、メディアおよびエンターテイメント、運輸および物流、政府、その他

対象国

北米では米国、カナダ、メキシコ、ヨーロッパではドイツ、フランス、英国、オランダ、スイス、ベルギー、ロシア、イタリア、スペイン、トルコ、その他のヨーロッパ、ヨーロッパでは中国、日本、インド、韓国、シンガポール、マレーシア、オーストラリア、タイ、インドネシア、フィリピン、アジア太平洋地域 (APAC) ではその他のアジア太平洋地域 (APAC)、中東およびアフリカ (MEA) の一部としてサウジアラビア、UAE、南アフリカ、エジプト、イスラエル、中東およびアフリカ (MEA) の一部としてその他の中東およびアフリカ (MEA)、南米の一部としてブラジル、アルゼンチン、その他の南米

主要な市場プレーヤー

IBM(米国)、DataRobot Inc.(米国)、apheris AI GmbH(ドイツ)、The Digital Talent Ecosystem(米国)、Databand(イスラエル)、dotData(米国)、Explorium Inc.(米国)、Noogata(イスラエル)、Tecton Inc.(米国)、Spell Designs Pty Ltd(米国)、Arrikto Inc.(米国)、Iterative(米国)、Google Inc(米国)、Microsoft(米国)、SAS Institute Inc.(米国)、Amazon Web Services, Inc.(米国)、The MathWorks, Inc.(米国)、Cloudera Inc.(米国)、Teradata(米国)、TIBCO Software Inc.(米国)、ALTERYX, INC.(米国)、RapidMiner(米国)、Databricks(米国)、Snowflake Inc.(米国)、H2O.ai(米国)、Altair Inc.(米国)、Anaconda Inc.(米国)、SAP SE(米国)、Domino Data Lab Inc.(米国)、Dataiku(米国)

市場機会

  • オープンソースイノベーション
  • 予測分析の進歩

付加価値データ情報セット

データブリッジ市場調査チームがまとめた市場レポートには、市場価値、成長率、市場セグメント、地理的範囲、市場プレーヤー、市場シナリオなどの市場洞察に加えて、詳細な専門家分析、輸入/輸出分析、価格分析、生産消費分析、ペストル分析が含まれています。

データサイエンスプラットフォーム市場の定義

データ サイエンス プラットフォームは、データ サイエンティストがデータ駆動型プロジェクトを開発、管理、実行するためのツール、ライブラリ、インフラストラクチャを提供する統合環境です。これにより、ユーザーは大規模なデータセットを収集、分析、視覚化しながら、チーム間のコラボレーションを促進できます。これらのプラットフォームは、多くの場合、さまざまなプログラミング言語 (Python、R、SQL など)、機械学習アルゴリズム、データ パイプラインをサポートし、効率的なモデルの構築と展開を実現します。データ サイエンス プラットフォームは、バージョン管理、自動化、スケーラビリティなどの機能も提供しているため、組織はデータから得た洞察を構造化された反復可能な方法で意思決定に活用しやすくなります。

データサイエンスプラットフォーム市場の動向

ドライバー

  • データに基づく意思決定の需要

データ駆動型の意思決定への依存度の高まりは、データサイエンスプラットフォーム市場の主要な推進力です。業界を問わず、組織はデータインサイトを利用して戦略を強化し、顧客エンゲージメントを改善し、業務を合理化する方向にシフトしています。データサイエンスプラットフォームにより、企業は膨大なデータセットを効率的に処理および分析し、より正確で情報に基づいた意思決定を行うことができます。たとえば、2023年10月、GoodData Corporationは、機械学習(ML)、AI、ビジネスインテリジェンス(BI)ワークフローを強化するように設計された最新のAI駆動型データ分析プラットフォームを発表しました。このプラットフォームには、要約と洞察を提供する仮想アシスタントなど、さまざまな生成AI機能が組み込まれています。データの検出と開発のプロセスを合理化することで、ユーザーは情報に基づいた意思決定をより迅速に行うことができ、最終的にはデータ駆動型環境の効率と有効性が向上します。

  • ビッグデータの成長

IoT デバイス、ソーシャル メディア プラットフォーム、e コマース アクティビティなど、さまざまなソースから生成されるデータの急増は、データ サイエンス プラットフォーム市場の主要な推進力です。これらの膨大な量の非構造化データと構造化データには、効率的な保存、処理、分析のための堅牢なプラットフォームが必要です。たとえば、2024 年 1 月、Databricks は通信事業者とネットワーク サービス プロバイダー (NSP) 向けに特別に設計された新しいビジネス インテリジェンス プラットフォームを開始しました。この革新的なプラットフォームは、ネットワーク、運用、顧客とのやり取りを包括的に把握できるようにすることで、これらの企業を支援します。重要なのは、データのプライバシーを確​​保し、機密の知的財産を保護することで、通信会社が運用において高いセキュリティ基準を維持しながら、情報に基づいた意思決定を行えるようにすることです。

機会

  • Open-Source Innovation

Open-source innovation significantly enhances the data science platform market by providing accessible tools that foster collaboration and rapid development. Platforms such as Apache Spark and TensorFlow exemplify this trend, allowing data scientists to leverage robust libraries without hefty licensing fees. As organizations seek cost-effective solutions for machine learning and big data processing, they increasingly adopt these open-source frameworks, leading to a surge in community contributions and enhancements. This collaborative environment not only accelerates the development of new features but also attracts a larger talent pool, creating opportunities for businesses to innovate and maintain competitive advantages in a data-driven landscape.

  • Advances in Predictive Analytics

The surge in predictive analytics across healthcare, finance, and retail sectors presents significant opportunities in the data science platform market. In healthcare, predictive models are used to forecast patient outcomes and optimize treatment plans, as seen with tools such as IBM Watson Health. In finance, companies leverage predictive analytics for credit scoring and fraud detection, exemplified by FICO's advanced scoring algorithms. For instance, in October 2022, IBM Corporation launched the Diamondback tape library, an advanced storage solution utilizing LTO technology. This innovative product boasts an impressive capacity of up to 27 petabytes (PB) of data storage within a single server rack. The Diamondback is designed to meet the increasing demands for data storage, offering scalability and reliability for organizations needing to manage vast amounts of information securely and efficiently. As organizations recognize the value of predictive insights for decision-making, the demand for sophisticated data science platforms capable of handling complex modeling and forecasting continues to grow, creating lucrative market prospects.

Restraints/Challenges

  • Data Privacy and Security Concerns

Data privacy and security concerns significantly hinder the data science platform market. As organizations rely more on data analytics, they face mounting pressure to comply with stringent regulations such as GDPR and CCPA. Non-compliance can result in hefty fines and reputational damage, leading organizations to be cautious in their data handling practices. This trepidation restricts the adoption of advanced data science solutions, as companies may prioritize security over innovation. In addition, the need for robust security measures can increase implementation costs and complexity, further deterring organizations from investing in new data science platforms and slowing overall market growth.

  • Lack of Skilled Professionals

A lack of skilled professionals significantly hinders the data science platform market. The rapid evolution of data science technologies has resulted in a substantial talent gap, with many organizations struggling to find qualified data scientists and analysts. This shortage impedes the effective utilization of advanced data science platforms, leading to underperformance in analytics initiatives. Companies often invest in sophisticated tools but cannot maximize their potential due to insufficient expertise in interpreting data and deriving actionable insights. Consequently, this talent deficit stifles innovation, slows project timelines, and ultimately limits market growth as businesses fail to leverage data science capabilities to their fullest extent.

This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.

Data Science Platform Market Scope

The market is segmented on the basis of component type, function division, deployment model, organization size and end user application. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

Component Type

  • Platform
  • Services

Professional Services

  • Support and Maintenance
  • Consulting
  • Deployment and Integration

Managed Services

 Function Division

  • Marketing
  • Sales
  • Logistics
  • Finance and Accounting
  • Customer Support
  • Business Operations
  • Others

 Deployment Model

  • On-Premises
  • Cloud based

 Organization Size

  • Small and Medium-sized Enterprises (SMEs)
  • Large Enterprises

 End User Application

  • Banking, Financial Services, and Insurance (BFSI)
  • Telecom and IT
  • Retail and E-commerce
  • Healthcare and Life sciences
  • Manufacturing
  • Energy and Utilities
  • Media and Entertainment
  • Transportation and Logistics
  • Government
  • Others

Data Science Platform Market Regional Analysis

The market is analyzed and market size insights and trends are provided by component type, function division, deployment model, organization size and end user application as referenced above.

The countries covered in the market report are U.S., Canada, Mexico in North America, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in Asia-Pacific (APAC), Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).

North America is expected to dominate the data science platform market due to the presence of a well-established infrastructure and low labor costs in the advancing countries. Moreover, the effective after-sale services offered by manufacturers within the economies are further estimated to accelerate the expansion over the forecast period.

Asia-Pacific is expected to witness significant growth during the forecast period due to rapid growth in the oil and gas exploration operation in the area within the region. China's large base for producing electronics items makes it a significant contributor to the regional market expansion.

The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.

Data Science Platform Market Share

The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.

Data Science Platform Market Leaders Operating in the Market Are:

  • IBM (U.S.)
  • DataRobot Inc., (U.S.)
  • apheris AI GmbH (Germany)
  • The Digital Talent Ecosystem (U.S.)
  • Databand (Israel)
  • dotData (U.S.)
  • Explorium Inc., (U.S.)
  • Noogata (Israel)
  • Tecton Inc., (U.S.)
  • Spell Designs Pty Ltd (U.S.)
  • Arrikto Inc., (U.S.)
  • Iterative (U.S.)
  • Google Inc (U.S.)
  • Microsoft (U.S.)
  • SAS Institute Inc., (U.S.)
  • Amazon Web Services, Inc. (U.S.)
  • The MathWorks, Inc. (U.S.)
  • Cloudera Inc., (U.S.)
  • Teradata (U.S.)
  • TIBCO Software Inc. (U.S.)
  • ALTERYX, INC. (U.S.)
  • RapidMiner (U.S.),
  • Databricks (U.S.)
  • Snowflake Inc., (U.S.)
  • H2O.ai(米国)
  • アルタイル株式会社(米国)
  • アナコンダ社(米国)
  • SAP SE(米国)
  • Domino Data Lab Inc.(米国)
  • ダタイク(米国)

データサイエンスプラットフォーム市場の最新動向

  • 2024年6月、IBMコーポレーションは、最先端の人工知能(AI)、分析、データガバナンスソリューションの導入を促進することを目的としたテレフォニカテックとの戦略的コラボレーションを発表しました。このパートナーシップは、企業の進化するニーズに対応し、ますます複雑化するビジネス環境において、意思決定の改善、運用効率、顧客体験の向上のために高度なテクノロジーを活用できるようにすることを目的としています。
  • 2024年3月、マイクロソフトはクラウドAIとアクセラレーテッドコンピューティングテクノロジーを通じてヘルスケアとライフサイエンスのイノベーションを強化することに重点を置いたNVIDIAとのコラボレーションを発表しました。このパートナーシップは、精密医療とAI駆動型診断へのアクセスを迅速化することで、患者ケアに革命を起こすことを目指しています。この取り組みは、患者の診断と治療のためのより迅速で正確なソリューションを提供することでヘルスケア業界を大幅に進歩させ、最終的には健康成果を向上させることが期待されています。
  • 2023年1月、サイエンスアプリケーションインターナショナル株式会社は、AIおよび機械学習アプリケーションのローコードからフルコード開発をサポートする多目的ソリューションである「Tenjin」データサイエンスプラットフォームを発表しました。Dataikuを搭載したTenjinは、高度なデータ視覚化ツールとともに、展開からトレーニング、自動化まで、AIおよびMLモデル開発のライフサイクル全体を容易にします。このプラットフォームは、複雑なプロセスを簡素化し、より幅広いビジネスでAIを利用できるようにすることを目的としています。
  • 2022年10月、IBMコーポレーションは、LTOテクノロジーを活用した高度なストレージソリューションであるDiamondbackテープライブラリを発売しました。この革新的な製品は、1つのサーバーラック内で最大27ペタバイト(PB)のデータストレージという驚異的な容量を誇ります。Diamondbackは、増大するデータストレージの需要を満たすように設計されており、膨大な量の情報を安全かつ効率的に管理する必要がある組織に拡張性と信頼性を提供します。
  • 2022年6月、SAS Instituteは鎌倉株式会社を買収して機能を拡大し、統合リスクソリューションでポートフォリオを強化しました。この買収は、資産負債管理(ALM)および銀行を含むその他の金融セクターに特化したプロフェッショナルサービスの提供に重点を置いています。SASは、リソースと専門知識を組み合わせることで、複雑なリスク管理の課題に対処する包括的なソリューションを提供し、組織が情報に基づいた財務上の意思決定を行い、市場の不確実性を効果的に乗り切ることを目指しています。

SKU-

世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする

  • インタラクティブなデータ分析ダッシュボード
  • 成長の可能性が高い機会のための企業分析ダッシュボード
  • カスタマイズとクエリのためのリサーチアナリストアクセス
  • インタラクティブなダッシュボードによる競合分析
  • 最新ニュース、更新情報、トレンド分析
  • 包括的な競合追跡のためのベンチマーク分析のパワーを活用
デモのリクエスト

調査方法

データ収集と基準年分析は、大規模なサンプル サイズのデータ​​収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。

DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。

カスタマイズ可能

Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。

Frequently Asked Questions

市場は グローバルデータサイエンスプラットフォーム市場のセグメンテーション、コンポーネントタイプ別(プラットフォーム、サービス、サポートとメンテナンス、コンサルティング、展開と統合)、機能部門別(マーケティング、販売、物流、財務と会計、顧客サポート、ビジネスオペレーション、その他)、展開モデル別(オンプレミスとクラウドベース)、組織規模別(中小企業(SME)、大企業)、エンドユーザーアプリケーション別(銀行、金融サービス、保険(BFSI)、通信とIT、小売と電子商取引、ヘルスケアとライフサイエンス、製造、エネルギーと公共事業、メディアとエンターテイメント、運輸と物流、政府、その他)– 2031年までの業界動向と予測 に基づいて分類されます。
グローバルデータサイエンスプラットフォーム市場の規模は2023年にUSD 158.59 USD Billionと推定されました。
グローバルデータサイエンスプラットフォーム市場は2024年から2031年の予測期間にCAGR 29%で成長すると見込まれています。
市場で活動している主要プレーヤーは , List provided in description ,です。
Testimonial