>スペインの機械学習サービス市場、サービス別(マネージドサービス、プロフェッショナル、プロフェッショナルサービス)、ビジネス機能(人事、営業およびマーケティング、財務、運用)、導入モデル(クラウド、オンプレミス)、組織規模(大規模組織、中小規模組織)、アプリケーション(医薬品の発見、不正検出およびリスク管理、自然言語処理、マーケティングおよび広告、セキュリティおよび監視、画像認識、予測分析、データマイニング、拡張現実および仮想現実)、エンドユーザー(銀行、金融サービス、保険、ITおよび通信、研究および学術、政府および公共部門、小売およびeコマース、製造、ヘルスケアおよび医薬品、旅行および物流、エネルギーおよび公共事業、メディアおよびエンターテイメント)– 2029年までの業界動向と予測
市場分析と規模
機械学習サービス市場の企業は、コロナウイルス流行後の安定した収益源を確立するために、ヘルステック、BFSI、通信などの重要な業界に注力しています。しかし、技術的なエラーと機械学習の経験を持つ専門家の不足は、企業による機械学習の採用における主な制約要因の1つであるようです。これが、機械学習サービスプラットフォームの実装の障害となっています。さらに、ツールの不足によるデータセキュリティの不足は、市場の拡大に悪影響を及ぼします。したがって、機械学習サービス市場の参加者は、政府や規制機関と協力して、機械学習サービスビジネスを標準化する必要があります。
Data Bridge Market Research の分析によると、サービスとしての機械学習の市場価値は 2021 年に 54 億 5,000 万米ドルでしたが、2022 年から 2029 年の予測期間中に 39.76 % の CAGR で成長し、2029 年には 793 億 4,000 万米ドルに達すると予想されています。
市場の定義
機械学習は、さまざまなデータセットにさらされたときに基本的な機能を学習して変更する能力をコンピューターに提供するテクノロジーです。機械学習はビジネスにとって最も重要なツールとなっています。Amazon や Google などのテクノロジー大手は、顧客基盤を拡大し強化するために多額の支出を行っています。
レポートの範囲と市場セグメンテーション
レポートメトリック |
詳細 |
予測期間 |
2022年から2029年 |
基準年 |
2021 |
歴史的な年 |
2020 (2019 - 2014 にカスタマイズ可能) |
定量単位 |
売上高(10億米ドル)、販売数量(個数)、価格(米ドル) |
対象セグメント |
サービス (マネージド サービス、プロフェッショナル、プロフェッショナル サービス)、ビジネス機能 (人事、営業およびマーケティング、財務、運用)、導入モデル (クラウド、オンプレミス)、組織規模 (大規模組織、中小規模組織)、アプリケーション (医薬品の発見、不正検出およびリスク管理、自然言語処理、マーケティングおよび広告、セキュリティおよび監視、画像認識、予測分析、データ マイニング、拡張現実および仮想現実)、エンド ユーザー (銀行、金融サービス、保険、IT および通信、研究および学術、政府および公共部門、小売および電子商取引、製造、ヘルスケアおよび製薬、旅行および物流、エネルギーおよび公共事業、メディアおよびエンターテイメント) |
対象となる市場プレーヤー |
Google(米国)、Microsoft(米国)、IBM(米国)、SAP(ドイツ)、Amazon Web Services, Inc.(米国) |
市場機会 |
|
スペインの機械学習サービス 市場の動向
このセクションでは、市場の推進要因、利点、機会、制約、課題について理解します。これらはすべて、以下のように詳細に説明されます。
ドライバー:
- 技術の進歩
認識技術では急速な進歩と革新が起こっています。多くのソリューション プロバイダーがこれらの分野で多大な労力を費やしています。たとえば、Affectiva は最近、200 万を超える顔ビデオの最大のデータ リポジトリを備えた感情分析テクノロジーをリリースし、顧客が比類のない洞察で高い精度を達成できるようにしています。それに加えて、Cognitec System、Emotient、Gesturetek、Saffron、Palantir などの小規模なプレーヤーを含む他のプレーヤーは、ジェスチャー認識、顔認識、心理的特徴コンピューティング、体細胞分析の分野で重要な進歩を生み出しています。これらの開発は、今後数年間で市場の成長を促進すると予想されています。
- データの保存とアーカイブ
ディープラーニング アルゴリズムでは、データ保存およびアーカイブ パッケージが、非常に複雑な問題の解決策を予測する上で重要な役割を果たします。ディープラーニング アルゴリズム プログラムは、多数のレイヤーで構成される人工ニューラル ネットワークを扱うため、結果を提供するには大量のデータ セットが必要です。ディープラーニング アルゴリズム プログラムは、データ保存およびアーカイブ パッケージを使用して、人工ニューラル ネットワーク内の高度な機能に焦点を当てます。
- モデラーと処理
過去 10 年間で、機械学習テクノロジーは、統計、数学、神経生物学、コンピューティングなど、さまざまな分野から開発された「アルゴリズム」へと進化し、商業的に実行可能で計算的に堅牢なものになりました。音声認識、不正検出、ネットワーク開発など、今日提供されている多くのアプリケーションでは、分類、回帰、推定をサポートするさまざまな機械学習手法を使用して、構造化データセットを処理します。
- クラウドおよび Web ベースのアプリケーション プログラミング インターフェイス (APIS)
機械学習の分野では、データの需要は重要な入力パラメータです。銀行や金融サービスなどの多くの業種では、市場動向を予測するために大量のデータを即座に必要とします。機械学習アルゴリズムは、データストレージおよびアーカイブソフトウェアから情報を収集する場合、ソリューションを予測するのに非常に短い時間しかかかりません。この欠点を克服するために、機械学習アルゴリズムはクラウドとアプリケーションプラットフォーム間のインターフェイスを作成します。
機会:
- ヘルスケア業界への投資増加
医療分野では、ビッグデータは大量の複雑な統計を計算するために活用され、ケア業界のアプリケーションに不可欠な傾向やパターンを生み出します。ビッグデータは、医師が問題が発生する前にそれを予測するのに役立ちます。エルゼビア ヘルス アナリティクス グループはビッグデータを活用して西ドイツでの患者ケアに革命をもたらしました。同社は医療経済学者、医師、統計学者、IT 専門家、アナリストと緊密に連携し、適切な治療法に関するエビデンスに基づくデータを増やしています。これはビッグデータ ケアによって管理され、医療専門家が AI の支援を受けて適切に活用しています。ビッグデータ ケアの作成により、ドイツの機械学習市場の拡大が加速しました。
制限/課題:
機械学習サービス市場に投入できる確実な労働力の不足は、世界の機械学習サービス市場の成長をある程度妨げる重要な問題となる可能性があります。さらに、企業は、MLaaS プラットフォームに実装する特定の機能をカスタマイズする熟練したサービスを求めています。厳格なコンプライアンスの問題は、ターゲット市場を抑制すると予想されるもう 1 つの問題です。
このサービスとしての機械学習 市場レポートでは、最近の新しい開発、貿易規制、輸出入分析、生産分析、バリュー チェーンの最適化、市場シェア、国内および現地の市場プレーヤーの影響、新たな収益源の観点から見た機会の分析、市場規制の変更、戦略的市場成長分析、市場規模、カテゴリ市場の成長、アプリケーションのニッチと優位性、製品の承認、製品の発売、地理的拡張、市場における技術革新などの詳細が提供されます。サービスとしての機械学習市場の詳細については、 Data Bridge Market Research にアナリスト ブリーフをお問い合わせください。当社のチームが、情報に基づいた市場決定を行い、市場の成長を実現できるようお手伝いします。
COVID-19 による機械学習サービス 市場への影響
COVID-19パンデミックにより、世界中でソーシャルディスタンス技術が実践されるようになり、機械学習への需要が高まっています。機械学習をサービスとして市場に組み込むことは、統合のレベルと性質に応じて、ソフトウェアとサービスの両方を通じて実現できるはずです。熱カメラとクラスター識別システムの使用は、空港、駅、その他の公共の訪問場所で一般的になっています。これにより、機械学習をサービスとして市場に投入することが注目され、市場が拡大すると予想されています。さらに、COVIDケアセンターに関連するクリニックの制限区域全体で人々の存在を認識するためのAIの採用は、世界の機械学習をサービスとして市場にプラスの影響を与えています。AIと分析に使用されるアルゴリズムは、最近大幅に改善されており、機械学習をサービスとして市場に投入するプレーヤー/サプライヤーにとってダイナミックなチャンスを生み出しています。
スペインの機械学習サービス 市場の範囲
サービスとしての機械学習 市場は、サービス、ビジネス機能の展開モデル、組織規模、アプリケーション、エンドユーザーに基づいてセグメント化されています。これらのセグメント間の成長は、業界のわずかな成長セグメントの分析に役立ち、ユーザーに貴重な市場の概要と市場の洞察を提供し、コア市場アプリケーションを特定するための戦略的決定を下すのに役立ちます。
サービス
- マネージドサービス
- プロ
- プロフェッショナルなサービス
ビジネス機能
- 人事
- セールスとマーケティング
- 財務および運営
展開モデル
- 雲
- オンプレミス
組織規模
- 大規模組織
- 中小企業
応用
- 創薬
- 不正行為の検出とリスク管理
- 自然言語処理
- マーケティングと広告
- セキュリティと監視
- 画像認識
- 予測分析
- データマイニング
- 拡張現実と仮想現実
エンドユーザー
- 銀行および金融サービス
- 保険
- ITおよび通信
- 研究と学術
- 政府および公共部門
- 小売業と電子商取引
- 製造業
- ヘルスケアと医薬品
- 旅行と物流
- エネルギーとユーティリティ
- メディアとエンターテイメント
競争環境と 機械学習サービス 市場シェア分析
機械学習サービス 市場の競争状況は、競合他社ごとに詳細を提供します。含まれる詳細には、会社概要、会社の財務状況、収益、市場の可能性、研究開発への投資、新しい市場への取り組み、グローバルなプレゼンス、生産拠点と施設、生産能力、会社の強みと弱み、製品の発売、製品の幅と広さ、アプリケーションの優位性などがあります。提供されている上記のデータ ポイントは、機械学習サービス市場に関連する会社の焦点にのみ関連しています。
サービスとしての機械学習市場で活動している主要企業には、次のようなものがあります。
- Google(米国)、
- マイクロソフト(米国)、
- IBM(米国)、
- SAP(ドイツ)、
- Amazon Web Services, Inc. (米国)
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
目次
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF SPAIN MACHINE LEARNING AS A SERVICE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE SPAIN MACHINE LEARNING AS A SERVICE MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 TECHNOLOGY LIFE LINE CURVE
2.5 MULTIVARIATE MODELLING
2.6 TOP TO BOTTOM ANALYSIS
2.7 STANDARDS OF MEASUREMENT
2.8 VENDOR SHARE ANALYSIS
2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.1 DATA POINTS FROM KEY SECONDARY DATABASES
2.11 SPAIN MACHINE LEARNING AS A SERVICE MARKET: RESEARCH SNAPSHOT
2.12 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
6 PORTER’S FIVE FORCE MODEL
6.1 OVERVIEW
6.2 BARGAINING POWER OF BUYERS
6.3 BARGAINING POWER OF SUPPLIERS
6.4 THREAT OF NEW ENTRANTS
6.5 THREAT OF SUBSTITUTES
6.6 THREAT OF RIVALRY
7 INDUSTRY INSIGHTS
8 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY COMPONENT
8.1 OVERVIEW
8.2 SOFTWARE
8.3 SERVICE
8.3.1 BY TYPE
8.3.2 PROFESSIONAL SERVICE
8.3.2.1. CONSULTING & TRAINING SERVICES
8.3.2.2. SUPPORT & MAINTENANCE SERVICES
8.3.2.3. IMPLEMENTATION SERVICES
8.3.3 MANAGED SERVICE
9 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY BUSINESS FUNCTION
9.1 OVERVIEW
9.2 HUMAN RESOURCES
9.3 SALES AND MARKETING
9.4 FINANCE
9.5 OPERATION
10 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY DEPLOYMENT MODEL
10.1 OVERVIEW
10.2 CLOUD
10.3 ON-PREMISE
11 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY ORGANIZATION SIZE
11.1 OVERVIEW
11.2 LARGE ORGANIZATION
11.2.1 BY DEPLOYMENT MODEL
11.2.1.1. CLOUD
11.2.1.2. ON-PREMISE
11.3 SMALL & MEDIUM ORGANIZATION
11.3.1 BY DEPLOYMENT MODEL
11.3.1.1. CLOUD
11.3.1.2. ON-PREMISE
12 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY APPLICATION
12.1 OVERVIEW
12.2 DATA MINING
12.3 NATURAL LANGUAGE PROCESSING
12.4 IMAGE RECOGNITION
12.5 DRUG DISCOVERY
12.6 PREDICTIVE ANALYTICS
12.7 FRAUD DETECTION AND RISK MANAGEMENT
12.8 MARKETING AND ADVERTISING
12.9 AUGMENTED & VIRTUAL REALITY
12.1 SECURITY AND SURVEILLANCE
12.11 OTHERS
13 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY END-USER
13.1 OVERVIEW
13.2 BANKING, FINANCIAL SERVICES, AND INSURANCE
13.2.1 BY OFFERING
13.2.1.1. SOFTWARE
13.2.1.2. SERVICES
13.3 IT AND TELECOMMUNICATION
13.3.1 BY OFFERING
13.3.1.1. SOFTWARE
13.3.1.2. SERVICES
13.4 RESEARCH AND ACADEMIC
13.4.1 BY OFFERING
13.4.1.1. SOFTWARE
13.4.1.2. SERVICES
13.5 GOVERNMENT AND PUBLIC SECTOR
13.5.1 BY OFFERING
13.5.1.1. SOFTWARE
13.5.1.2. SERVICES
13.6 RETAIL & ECOMMERCE
13.6.1 BY OFFERING
13.6.1.1. SOFTWARE
13.6.1.2. SERVICES
13.7 MANUFACTURING
13.7.1 BY OFFERING
13.7.1.1. SOFTWARE
13.7.1.2. SERVICES
13.8 HEALTHCARE AND PHARMACEUTICALS
13.8.1 BY OFFERING
13.8.1.1. SOFTWARE
13.8.1.2. SERVICES
13.9 TRAVEL & LOGISTICS
13.9.1 BY OFFERING
13.9.1.1. SOFTWARE
13.9.1.2. SERVICES
13.1 ENERGY AND UTILITY
13.10.1 BY OFFERING
13.10.1.1. SOFTWARE
13.10.1.2. SERVICES
13.10.2 BY OFFERING
13.10.2.1. SOFTWARE
13.10.2.2. SERVICES
13.11 MEDIA AND ENTERTAINMENT
13.11.1 BY OFFERING
13.11.1.1. SOFTWARE
13.11.1.2. SERVICES
13.12 ACADEMIA AND RESEARCH
13.12.1 BY OFFERING
13.12.1.1. SOFTWARE
13.12.1.2. SERVICES
13.13 OTHERS
14 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: SPAIN
14.2 MERGERS & ACQUISITIONS
14.3 NEW PRODUCT DEVELOPMENT & APPROVALS
14.4 EXPANSIONS
14.5 REGULATORY CHANGES
14.6 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15 SPAIN MACHINE LEARNING AS A SERVICE MARKET, SWOT & DBMR ANALYSIS
16 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY PROFILE
16.1 MICROSOFT
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 GEOGRAPHIC PRESENCE
16.1.4 PRODUCT PORTFOLIO
16.1.5 RECENT DEVELOPMENTS
16.2 AMAZON WEB SERVICES, INC.
16.2.1 COMPANY SNAPSHOT
16.2.2 GEOGRAPHIC PRESENCE
16.2.3 PRODUCT PORTFOLIO
16.2.4 RECENT DEVELOPMENTS
16.3 GOOGLE,LLC
16.3.1 COMPANY SNAPSHOT
16.3.2 GEOGRAPHIC PRESENCE
16.3.3 REVENUE ANALYSIS
16.3.4 PRODUCT PORTFOLIO
16.3.5 RECENT DEVELOPMENTS
16.4 IBM
16.4.1 COMPANY SNAPSHOT
16.4.2 GEOGRAPHIC PRESENCE
16.4.3 REVENUE ANALYSIS
16.4.4 PRODUCT PORTFOLIO
16.4.5 RECENT DEVELOPMENTS
16.5 SAP SE
16.5.1 COMPANY SNAPSHOT
16.5.2 GEOGRAPHIC PRESENCE
16.5.3 PRODUCT PORTFOLIO
16.5.4 RECENT DEVELOPMENTS
16.6 BIGML
16.6.1 COMPANY SNAPSHOT
16.6.2 GEOGRAPHIC PRESENCE
16.6.3 PRODUCT PORTFOLIO
16.6.4 RECENT DEVELOPMENTS
16.7 ISHIR
16.7.1 COMPANY SNAPSHOT
16.7.2 GEOGRAPHIC PRESENCE
16.7.3 PRODUCT PORTFOLIO
16.7.4 RECENT DEVELOPMENTS
16.8 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP
16.8.1 COMPANY SNAPSHOT
16.8.2 GEOGRAPHIC PRESENCE
16.8.3 PRODUCT PORTFOLIO
16.8.4 RECENT DEVELOPMENTS
16.9 SAS INSTITUTE INC.
16.9.1 COMPANY SNAPSHOT
16.9.2 GEOGRAPHIC PRESENCE
16.9.3 PRODUCT PORTFOLIO
16.9.4 RECENT DEVELOPMENTS
16.1 FICO
16.10.1 COMPANY SNAPSHOT
16.10.2 GEOGRAPHIC PRESENCE
16.10.3 PRODUCT PORTFOLIO
16.10.4 RECENT DEVELOPMENTS
17 QUESTIONNAIRE
18 CONCLUSION
19 RELATED REPORTS
20 ABOUT DATA BRIDGE MARKET RESEARCH
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。