北米の創薬市場における人工知能 (AI)
Market Size in USD Billion
CAGR : %
予測期間 |
2024 –2031 |
市場規模(基準年) |
USD 1.07 Billion |
Market Size (Forecast Year) |
USD 9.88 Billion |
CAGR |
|
主要市場プレーヤー |
>北米の創薬市場における人工知能 (AI)、アプリケーション別 (新薬候補、薬物の最適化と転用、前臨床試験と承認、薬物モニタリング、新しい疾患関連ターゲットと経路の発見、疾患メカニズムの理解、情報の集約と統合、仮説の形成と適格性、デノボ薬物設計、古い薬物の薬物ターゲットの発見など)、テクノロジー (機械学習、ディープラーニング、自然言語処理など)、薬物タイプ (小分子と巨大分子)、提供 (ソフトウェアとサービス)、適応症 (免疫腫瘍学、神経変性疾患、心血管疾患、代謝性疾患など)、最終用途 (開発業務受託機関 (CRO)、製薬およびバイオテクノロジー企業、研究センターと学術機関など) – 2031 年までの業界動向と予測。
北米の創薬市場における人工知能(AI)の分析と規模
創薬市場における人工知能 (AI) は目覚ましい進歩を遂げ、データ分析、予測モデリング、仮想スクリーニングを通じてプロセスに革命をもたらしました。そのメリットには、医薬品開発の加速、コスト削減、ターゲット特定精度の向上などがあります。AI はリード化合物を最適化し、臨床試験を効率化し、個別化医療を強化し、リスクと市場投入までの時間を最小限に抑えながら、さまざまな疾患に対する新しい治療法を約束します。
北米の創薬における人工知能 (AI) 市場規模は、2023 年に 10 億 7,000 万米ドルと評価され、2024 年から 2031 年の予測期間中に 54.9% の CAGR で成長し、2031 年には 98 億 8,000 万米ドルに達すると予測されています。これは、市場価値を示しています。市場価値、成長率、セグメンテーション、地理的範囲、主要プレーヤーなどの市場シナリオに関する洞察に加えて、Data Bridge Market Research がまとめた市場レポートには、詳細な専門家の分析、患者の疫学、パイプライン分析、価格設定分析、規制の枠組みも含まれています。
レポートの範囲と市場セグメンテーション
レポートメトリック |
詳細 |
予測期間 |
2024年から2031年 |
基準年 |
2023 |
歴史的な年 |
2022 (2016~2021年にカスタマイズ可能) |
定量単位 |
売上高(10億米ドル)、販売数量(個数)、価格(米ドル) |
対象セグメント |
Application (Novel Drug Candidates, Drug Optimization and Repurposing Preclinical Testing and Approval, Drug Monitoring, Finding New Diseases Associated Targets and Pathways, Understanding Disease Mechanisms, Aggregating and Synthesizing Information, Formation and Qualification of Hypotheses, De Novo Drug Design, Finding Drug Targets of an Old Drug and Others), Technology (Machine Learning, Deep Learning, Natural Language Processing and Others), Drug Type (Small Molecule and Large Molecule), Offering (Software and Services), Indication (Immuno-Oncology, Neurodegenerative Diseases, Cardiovascular Diseases, Metabolic Diseases and Others), End Use (Contract Research Organizations (CROs), Pharmaceutical and Biotechnology Companies, Research Centers and Academic Institutes and Others) |
Countries Covered |
U.S., Canada and Mexico |
Market Players Covered |
NVIDIA Corporation (U.S.), IBM Corp. (U.S.), Atomwise Inc. (U.S.), Microsoft (U.S.), Benevolent AI (U.K.), Aria Pharmaceuticals, Inc. (U.S.), DEEP GENOMICS (Canada), Exscientia (U.K.), Insilico Medicine (Hong Kong), Cyclica (Canada), NuMedii, Inc. (U.S.), Envisagenics (U.S.), Owkin Inc. (U.S.), BERG LLC (U.S.), Schrödinger, Inc. (U.S.), XtalPi Inc. (China), and BIOAGE Inc. (U.S.) |
Market Opportunities |
|
Market Definition
Artificial intelligence (AI) in drug discovery employs algorithms and machine learning to expedite the identification and development of potential pharmaceutical compounds. By analyzing vast datasets, AI models predict molecular interactions, optimize drug designs, and forecast biological activity, significantly accelerating the discovery process. AI-driven approaches enhance efficiency, precision, and innovation in drug development, offering promising solutions to complex healthcare challenges.
Artificial Intelligence (AI) in Drug Discovery Market Dynamics
Drivers
- Accelerated Drug Discovery Process
AI expedites the drug discovery process by analyzing vast datasets, predicting molecular interactions, and identifying potential drug candidates more rapidly than traditional methods. For instance, Atomwise, using AI-powered virtual screening, identified a drug candidate for Ebola in just a few days, a process that typically takes months using traditional methods. This acceleration allows for quicker identification and development of promising compounds, potentially saving lives in urgent medical situations.
- Rise in Incidence of Chronic Diseases Propels Need
The surge in chronic diseases worldwide, exemplified by CDC data showing six in 10 U.S. adults affected, underscores the urgency for effective treatments. AI in drug discovery emerges as a promising solution to mitigate this health crisis. Through analyzing vast datasets, AI platforms offer insights into developing drugs targeting conditions such as heart disease and diabetes, addressing the pressing need for innovative therapies to reduce mortality rates.
Opportunities
- Rising Collaboration and Data Sharing among Researchers
AI fosters collaboration among researchers and facilitates data sharing across institutions and companies, enabling access to diverse datasets and enhancing the collective knowledge base for drug discovery. For instance, platforms such as OpenAI's Drug Discovery, which harness AI to analyze molecular structures and predict drug properties, encourage collaborative efforts by providing a shared space for researchers to access and contribute to a vast pool of data, accelerating the pace of discovery and innovation in the pharmaceutical industry.
- Growing Demand for Personalized Medicine
AI facilitates personalized medicine by analyzing patient data, including genomics, proteomics, and clinical records, to identify biomarkers indicative of disease susceptibility and treatment response. For instance, AI-driven analysis of tumor genomic profiles can predict patient responses to specific cancer therapies, enabling tailored treatment strategies that maximize efficacy and minimize adverse effects, ultimately improving patient outcomes in oncology and beyond.
Restraints/Challenges
- Integration with Traditional Methods Hinder Workflow
Integrating AI with traditional drug discovery methods faces hurdles in standardization, compatibility, and workflow optimization. Harmonizing AI algorithms with established experimental and computational techniques necessitates meticulous planning to ensure seamless integration, minimizing disruptions to existing workflows.
- Data Privacy and Accessibility Limit Development
Access to proprietary data in drug discovery is restricted due to privacy, intellectual property, and regulatory constraints. This limits the availability of data for AI models, hindering their development and validation. Privacy concerns, especially regarding patient data, necessitate careful handling and compliance with regulations, further complicating data accessibility for AI-driven drug discovery initiatives.
This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
Recent Developments
- In July 2021, Chief.AI introduced a pay-as-you-go AI platform for drug discovery, democratizing access to advanced AI technologies. This empowers small and medium enterprises to pinpoint breakthrough therapeutics swiftly and precisely, addressing the unpredictability of traditional drug discovery
- In January 2021, Nucleai and Debiopharm Pharma formed a collaborative agreement, permitting the latter to utilize Nucleai's AI platform for oncology drug candidates. This underscores AI's growing significance in refining drug development processes, particularly in biomarker-based therapies
- In September 2020 witnessed Atomwise securing USD 123 million in Series B financing, led by Sanabil and B Capital Group Investments. This substantial investment aims to expand Atomwise's market presence, initiate its drug discovery pipeline, and forge new partnerships with pharmaceutical firms, emphasizing AI's pivotal role in advancing artificial intelligence in drug discovery and development
- In July 2020, IBM strategically acquired WDG Automation, enriching its AI-infused automation capabilities for enterprises. This strategic move enhances IBM's capacity to deliver comprehensive AI solutions, spanning from business processes to IT operations, thereby fortifying its overall portfolio
Artificial Intelligence (AI) in Drug Discovery Market Scope
The market is segmented on the basis of application, technology, drug type, offering, indication, and end use. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Application
- Novel Drug Candidates
- Drug Optimization and Repurposing Preclinical Testing and Approval
- Drug Monitoring
- Finding New Diseases Associated Targets and Pathways
- Understanding Disease Mechanisms
- Aggregating and Synthesizing Information
- Formation and Qualification of Hypotheses
- De Novo Drug Design
- Finding Drug Targets of an Old Drug
- Others
Technology
- Machine Learning
- Deep Learning
- Natural Language Processing
- Others
Drug Type
- Small Molecule
- Large Molecule
Offering
- Software
- Services
Indication
- Immuno-Oncology
- Neurodegenerative Diseases
- Cardiovascular Diseases
- Metabolic Diseases
- Others
End Use
- 契約研究機関(CRO)
- 製薬・バイオテクノロジー企業
- 研究センターおよび学術機関
- その他
北米の創薬市場における人工知能(AI)の地域分析/洞察
市場は分析され、市場規模の洞察と傾向は、上記のように国、用途、技術、薬物の種類、提供、適応症、および最終用途別に提供されます。
市場レポートで取り上げられている国は、北米では米国、カナダ、メキシコです。
米国は、主要な市場プレーヤーと、高い GDP を誇る最大の消費者市場としての地位に後押しされ、創薬市場における人工知能を支配しています。この国の成長は、創薬アプリケーションに合わせた AI 技術の進歩によって促進されています。
レポートの国別セクションでは、市場の現在および将来の動向に影響を与える国内市場における個別の市場影響要因と規制の変更も提供しています。下流および上流のバリュー チェーン分析、技術動向、ポーターの 5 つの力の分析、ケース スタディなどのデータ ポイントは、各国の市場シナリオを予測するために使用される指標の一部です。また、国別データの予測分析を提供する際には、グローバル ブランドの存在と可用性、および地元および国内ブランドとの競争が激しいか少ないために直面する課題、国内関税と貿易ルートの影響も考慮されます。
ヘルスケアインフラの成長 導入ベースと新技術の浸透
この市場では、各国の医療設備支出の増加、市場向け各種製品のインストールベース、ライフライン曲線を使用した技術の影響、医療規制シナリオの変化と市場への影響など、詳細な市場分析も提供しています。データは、2016年から2021年までの履歴期間について利用可能です。
医薬品発見市場シェア分析における競争環境と人工知能 (AI)
市場競争環境では、競合他社ごとの詳細が提供されます。詳細には、会社概要、会社の財務状況、収益、市場の可能性、研究開発への投資、新しい市場への取り組み、世界的なプレゼンス、生産拠点と施設、生産能力、会社の強みと弱み、製品の発売、製品の幅と広さ、アプリケーションの優位性などが含まれます。提供される上記のデータ ポイントは、市場に関連する会社の焦点にのみ関連しています。
市場で活動している主要企業は次のとおりです。
- NVIDIA コーポレーション (米国)
- IBM社(米国)
- アトムワイズ株式会社(米国)
- マイクロソフト(米国)
- 慈悲深いAI(イギリス)
- アリア・ファーマシューティカルズ社(米国)
- ディープ・ジェノミクス(カナダ)
- エクセンシア(英国)
- インシリコメディシン(香港)
- サイクリカ(カナダ)
- NuMedii, Inc.(米国)
- エンビサジェニクス(米国)
- オウキン社(米国)
- BERG LLC(米国)
- シュレディンガー社(米国)
- XtalPi Inc.(中国)
- バイオエイジ株式会社(米国)
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。