世界の自然言語処理 NLP ヘルスケア ライフ サイエンス市場業界の概要と 2031 年までの予測
Market Size in USD Billion
CAGR : %
予測期間 |
2024 –2031 |
市場規模(基準年) |
USD 2.11 Billion |
Market Size (Forecast Year) |
USD 8.48 Billion |
CAGR |
|
Major Markets Players |
|
>世界の自然言語処理 NLP ヘルスケア ライフ サイエンス市場は、2023 年に 21 億 1,000 万米ドルと評価されました。市場規模は 19% の CAGR で成長し、2031 年までに 84 億 8,000 万米ドルに達すると予測されています。
世界の自然言語処理 NLP ヘルスケア ライフ サイエンス市場 – 業界概要
ヘルスケアおよびライフサイエンス部門は、電子健康記録、臨床試験レポート、研究データ、患者レポートなど、膨大な量のデータを生成します。世界経済フォーラムによると、ヘルスケア業界は世界中で生成されるデータの 30% 以上を生成し、そのほとんどは使用されていません。ヘルスケア部門への自然言語処理 (NLP) の組み込みは、医療データの処理に大きな役割を果たし、さまざまな健康状態に効果的な治療法となる可能性のある治療法や療法、薬物、医薬品の発見の基盤となる可能性のあるイノベーションと発明につながります。NLP は、包括的なデータ分析指向のアプローチにより、ヘルスケアおよびライフサイエンス業界を完全に変革しました。現在、NLP の非構造化データの動的分析、感情分析、固有表現認識、および創薬により、患者エンゲージメントを大幅に改善するのに役立つ貴重な洞察を抽出できるため、使用されないヘルスケアおよびライフサイエンスの記録はなく、その結果、世界的な NLP ヘルスケア ライフサイエンス市場が拡大しています。
Data Bridge Market Research の市場レポートには、最近の動向、貿易規制、市場シェア、セグメンテーションと地域分析に基づく市場動向、市場プレーヤーの影響、新たな収益源の観点から見た機会の分析、市場規制、戦略的な市場成長分析、市場規模、カテゴリ別の市場成長、アプリケーションのニッチと優位性、製品承認、製品発売、地理的拡大、市場における技術革新などの詳細が記載されています。市場に関する詳細情報を入手するには、Data Bridge Market Research の専門アナリスト チームにお問い合わせください。当社のチームは、情報に基づいた市場決定を行い、ビジネスの成長を実現できるようお手伝いします。
世界の自然言語処理 NLP ヘルスケア ライフサイエンス市場規模
NLP ヘルスケア ライフサイエンス市場レポート指標の詳細 |
|
予測期間 |
2024-2031 |
基準年 |
2023 |
歴史的な年 |
2022 (カスタマイズ可能 2016-2021) |
測定単位 |
10億米ドル |
データポインタ |
市場洞察、市場価値、成長率、市場セグメント、地理的範囲、市場プレーヤー、市場シナリオ、詳細な専門家分析、患者疫学、パイプライン分析、価格分析、規制枠組み。 |
NLPとヘルスケアおよびライフサイエンスの融合は、データをセクターの利益のために活用することで、医療に進化をもたらしました。ヘルスケアデータの急激な増加により、この膨大な非構造化データを管理して貴重な洞察を掘り出すのに役立つNLPソリューションの必要性が加速しています。AIと機械学習の継続的な革新は、NLPアプリケーションの機能と精度の向上に役立ち、ヘルスケアの研究開発を強化するNLPテクノロジーの採用をさらに促進しています。NLPとヘルスケアの相互リンクは、患者ケアとヘルスケアサービスを調整して市場の成長をもたらすヘルスケアサービスプロバイダーにとって恩恵です。Databridge Market Researchは市場を包括的に分析し、世界の自然言語処理NLPヘルスケアライフサイエンス市場が3.64%のCAGRで成長していることを明らかにしました。市場規模は2023年に21億1,000万米ドルと評価され、2031年までに84億8,000万米ドルまで成長すると予想されています。
NLP ヘルスケア ライフサイエンス 市場の動向
NLPヘルスケアライフサイエンス市場の成長要因
電子健康記録(EHR)を整理してさらに分析する
医療機関が使用する電子健康記録 (EHR) は、患者関連データを大量に生成し、構造化、保存、分析が困難になります。これらの電子記録には通常、医療レポート、患者の履歴、およびその他の種類のデータが含まれます。このデータの整理と調査が重要であるだけでなく、このデータに簡単にアクセスできることも同様に重要です。臨床文書、音声認識、データ マイニング研究、臨床意思決定サポートなどの NLP テクノロジは、医療データの抽出、調査、および使用に応じた可用性の確保において非常に生産的です。NLP を活用することで、医療提供者はこの膨大なデータをより効果的に分析および解釈できるため、臨床意思決定の強化、患者ケアのパーソナライズ、運用効率の向上につながり、市場の成長が促進されます。
人工知能(AI)と機械学習(ML)に基づく予測分析
NLP は人工知能のサブディビジョンであり、傾向やパターンを識別する役割を果たす統計モデルと分析モデルを備えています。ヘルスケアの NLP に複雑なデータが入力されると、患者の記録を包括的に分析するように構造化されます。言い換えれば、患者関連データに対して予測分析を実行し、現在の健康状態と身体への影響のレベルを明らかにするとともに、患者が罹りやすい病気や疾患を予見するのに役立ちます。これらのテクノロジーにより、非常に大規模なデータセットから有用な洞察を抽出し、パターンを特定し、結果を予測して、より情報に基づいた臨床決定を下し、患者の転帰を改善できます。この予測分析の結論は、患者ケアの改善と、予測された健康状態を防ぐための高度な予防策です。NLP による予測分析は、患者ケア サービスの向上と市場の成長促進に大きく貢献しています。
患者の記録と文書の自動化により医療費を削減
自然言語処理 (NLP) を活用した自動臨床文書作成は、口頭または書面による情報を構造化された実用的なデータに変換することで、患者記録の管理を効率化します。この自動化により、医療従事者の負担が軽減され、手入力によるエラーが最小限に抑えられ、患者情報が正確かつ包括的に記録されます。この自動化テクノロジーはコスト効率に優れた方法であり、医療従事者が管理よりも患者のケアに多くの時間を費やすことが容易になり、医療記録の正確性が向上し、全体的な効率が向上します。これらの単純な作業が自動化されることで、医療従事者はコスト効率を享受しながら、患者ケアの全体的な品質を向上させることができます。自動化により、他の医師や医療センターのデータベースに保存されている患者記録全体を照合することで、医療記録の統合も可能になります。NLP によって医療がコスト効率に優れていることは、グローバル NLP ヘルスケア ライフ サイエンスの成長を刺激します。
NLPヘルスケアライフサイエンス市場の成長機会
カスタマイズされた治療計画
NLP は、個別化された集中的な治療計画を準備する上で重要な役割を果たします。NLP は、電子医療記録、臨床記録、病歴などのさまざまなソースから患者のデータを抽出して統合する機能があり、患者の特定のニーズ、遺伝的要因、健康状態を簡単に処理して識別できます。これにより、医療提供者は患者のニーズに合った治療計画を準備できます。パーソナライズされた治療計画を考案することは、医師が患者に最も効果的な治療コースを作成し、それによって患者ベースを拡大する機会です。たとえば、NLP は患者の病歴のパターンを強調表示できるため、最も効果的である可能性の高い薬を決定したり、他のケースに類似した可能性のある副作用を特定したりすることもできます。このように、NLP は介入がより集中的かつ効果的になり、治療の効率と患者の転帰が改善される精密医療をサポートします。
ウェアラブルへのIoTの統合
IoT を活用した NLP を組み込んだウェアラブル端末により、リアルタイムの患者データを取得できます。これにより、患者の健康状態を一日中リモートで監視し、医療従事者が合併症や変化を記録してすぐに行動し、将来同様の問題が発生するのを防ぐための行動計画を立てることができます。
製薬・バイオテクノロジー企業との連携
製薬会社やバイオテクノロジー会社と連携して、自然言語処理 (NLP) を新薬の発見、臨床試験の管理、薬物安全性監視プロセスに統合することで、ライフサイエンスの効率性を高め、イノベーションを加速します。NLP は、医療記録や患者レポートからのデータ抽出を自動化することで臨床試験の効率を高め、試験データの募集と分析を迅速化します。
NLP ヘルスケア ライフサイエンス 市場規模 成長 課題
ヘルスケアや健康科学における NLP では、通常、他のコマンドには適用されない可能性のある特定の用語のグループが提供されます。人間の言語は進化し続けるため、定義済みの用語のグループでは、データが不正確に構造化される可能性があります。これは通常、NLP プログラムに組み込みの用語のグループがあり、それが調査対象の非構造化データと一致しない場合に発生します。この課題は、ある程度の人間の関与があれば簡単に克服できます。
NLP は、非構造化データを整理および分類することができます。ただし、人間の言語の複雑さに直面すると、ツールの効率が低下する可能性があります。複雑な言語、方言、参照ポイントに対応できない可能性があります。その結果、誤検知や誤検出の可能性が高まります。
NLPヘルスケアライフサイエンス市場規模の成長の制約
データのプライバシーとセキュリティに関する懸念
NLP ソリューションの適用において、患者の機密情報の処理は、プライバシー法やデータ セキュリティ侵害に関する重大な懸念を引き起こします。医療提供者はすでに NLP テクノロジを最大限に実装するためのあらゆる機会を模索していますが、米国の HIPAA や欧州の GDPR に基づく厳格なデータ保護法を順守する必要があります。これらの法律は、患者の機密性を維持し、個人の医療情報への不正アクセスを阻止する目的で制定されています。これらすべてを実現するには、NLP システムは完全にセキュリティ対応である必要があります。この要件を満たすには、保存時および転送中のデータを暗号化するための堅牢な方法、データへのアクセスを許可されたユーザーのみに制限する非常に厳格なアクセス制御、および患者の ID の望ましくない露出を防ぐための匿名化技術を適用する必要があります。これらのセキュリティ プロトコルを集約することで、
NLPシステムの統合の複雑さ
自然言語処理 (NLP) システムを、EHR や臨床システムなどの既存の医療 IT インフラストラクチャと統合することは、複雑で時間のかかる作業です。医療組織は、NLP ソリューションを導入する際に、相互運用性の問題、データの標準化、レガシー システムとの互換性などの課題に直面します。統合プロセスでは、さまざまなプラットフォーム間でシームレスな接続性と機能性を確保するために、慎重な計画、カスタマイズ、IT チームとの調整が必要です。さらに、医療スタッフに NLP ツールを効果的に活用し、生成された洞察を解釈するためのトレーニングを行うことで、実装上の課題がさらに生じます。
NLP ヘルスケア ライフサイエンス市場の範囲と動向
NLP ヘルスケア ライフサイエンス市場セグメンテーションの概要 |
|||
セグメントタイプ |
サブセグメント |
||
成分 |
スタンドアロンソリューションとサービス |
||
NLPタイプ |
ルールベース NLP、統計 NLP、ハイブリッド NLP |
||
展開モード |
オンプレミス、クラウド |
||
組織規模 |
大企業、中小企業 |
||
|
|
||
エンドユーザー |
医師のためのNLP、研究者のためのNLP、患者のためのNLP、臨床オペレーターのためのNLP |
重要な洞察
- 近年、ヘルスケアにおけるゲームチェンジャーとしての AI の可能性が浮上し、機械学習と NLP 技術を採用して増大するデータを効果的に処理することで、病院や医療研究の現場で臨床記録の管理と運用を効率化する自動臨床コーディングと呼ばれる最も印象的なアプリケーションの 1 つが強化されています。
- 最近の調査で確認されているように、ここ数年、ディープラーニング(現在の AI の主流のアプローチ)を使用した自動臨床コーディングに関する記事が急増しています。
- 懸念事項は解決され、チャットボットの安全性と有効性が指摘されていますが、医療における人間的側面を置き換えることはできません。このように、チャットボットは、医療専門家と連携してコストを削減し、ワークフローの効率を高め、より良い結果をもたらすために、臨床診療の不可欠な部分となることしかできません。
NLP ヘルスケア ライフ サイエンス市場地域分析 - 市場動向
NLP ヘルスケア ライフサイエンス市場地域概要 |
|
地域 |
国 |
ヨーロッパ |
ドイツ、フランス、イギリス、オランダ、スイス、ベルギー、ロシア、イタリア、スペイン、トルコ、その他のヨーロッパ諸国 |
アジア太平洋 |
中国、日本、インド、韓国、シンガポール、マレーシア、オーストラリア、タイ、インドネシア、フィリピン、その他のアジア太平洋諸国 |
北米 |
米国、カナダ、メキシコ |
外務省 |
サウジアラビア、UAE、南アフリカ、エジプト、イスラエル、その他の中東およびアフリカ |
南アメリカ |
ブラジル、アルゼンチン、その他の南米 |
重要な洞察
- 北米は、NLP ソリューションの需要の増加と、ロボット工学および NLP 関連の研究開発イニシアチブへの多額の投資により、市場を独占すると予想されています。この地域の高度な医療インフラストラクチャと主要なテクノロジー大手の強力な存在により、臨床文書、患者とのやり取りの分析、データ分析など、さまざまなアプリケーションで NLP テクノロジーが急速に導入されています。
- アジア太平洋地域では、ビジネス運営の最適化を目的とした先進技術の普及により、大幅な成長が見込まれています。医療 IT インフラストラクチャへの投資の増加と、臨床意思決定プロセスと患者エンゲージメントの改善における NLP の利点に関する認識の高まりが、この成長を推進する主な要因です。
- オランダ科学研究機構 (NWO) は、生物医学研究から得られた科学的データの分析に NLP を適用するプロジェクトに携わっています。その目標は、新しい治療法を開発し、病気の生物学に対する理解を深めることです。
- 欧州連合が資金提供している欧州健康データ空間 (EHDS) プロジェクトは、複数のヨーロッパ言語を処理できる NLP ツールの開発に重点を置いています。この取り組みは、ヨーロッパ全土のさまざまな言語や方言にわたる健康データを処理できる標準化された NLP ソリューションを作成することを目指しています。
- 英国の NHS Digital は、臨床文書と情報検索を強化するために、NLP テクノロジーを EHR システムに統合することに重点を置いています。このような統合により、患者データの精度レベルが向上し、医療記録からのデータ抽出と分析プロセスが自動化されるため、別の意味では適切な臨床判断を適切に行うことができます。
- 南アフリカでは、Data Science Africa が、アフリカーンス語やズールー語など、さまざまな現地言語をサポートするように構築された NLP モデルを開発し、地域ベースの医療システム内で多言語の要件を満たすことができるようにしています。
NLPヘルスケアライフサイエンス市場の主要プレーヤー
- 3M(米国)
- サーナーコーポレーション(米国)
- ニュアンスコミュニケーションズ株式会社(米国)
- ドルビーシステムズ社(米国)
- マイクロソフト(米国)
- IBM(米国)
- Google LLC (Alphabet Inc.) (米国)
- Amazon Web Services Inc. (米国)
- Apixio Inc.(米国)
- アヴェルビス(ドイツ)
- クリニシンク(米国)
- レキサリティクス(米国)
- ナラティブサイエンス(米国)
- JohnSnow Labs(米国)
- BenevolentAI(イギリス)
NLP ヘルスケア ライフサイエンス市場の最近の動向
- 2024 年 2 月、Persistent Systems は Microsoft と連携して、生成 AI を搭載した新しい PHM ソリューションをリリースしました。価値ベースのケア モデルを支えるために開発されたこの高度なソリューションは、SDOH を使用して非臨床的な患者のニーズを測定します。その結果、いくつかの臨床状態における医療費の予測分析の精度が向上します。
- 2023 年 6 月、価値ベースのヘルスケア向け人工知能ソリューションのリーダーである Apixio は、健康保険の前払い請求の精度を高める専門知識で知られるテクノロジー企業 ClaimLogiq との合併を完了しました。新しく合併した企業は Apixio の名称で呼ばれ、すぐにヘルスケア データおよび分析の分野で最大かつ最も有力な企業の 1 つになります。この戦略的な合併により、請求処理における Apixio の高度な AI と ClaimLogiq の精度が統合され、包括的な洞察とソリューションを提供するための強力なプラットフォームが生まれます。新しい Apixio は、データの精度を向上させ、コスト予測を最適化し、より効果的な価値ベースのケア戦略を推進することで、ヘルスケア管理に革命を起こし、ヘルスケア分析業界の新しい標準を目指しています。
DBMR の自然言語処理 NLP ヘルスケア ライフ サイエンス市場に関する市場レポートでは、いくつかの重要なビジネス上の意思決定に役立つ貴重な洞察が提供されます。当社のレポートと調査の専門知識に基づいて、ビジネスのための現実的な成長戦略を作成できます。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。