世界の MLOP 市場
Market Size in USD Billion
CAGR : %
予測期間 |
2024 –2031 |
市場規模(基準年) |
USD 7.62 Billion |
Market Size (Forecast Year) |
USD 11.69 Billion |
CAGR |
|
主要市場プレーヤー |
>グローバル MLOP 市場、コンポーネント別 (プラットフォーム、サービス)、導入モード別 (オンプレミス、クラウド、ハイブリッド)、組織規模別 (大企業、中小企業 (SME))、業種別 (金融サービス (BFSI)、製造、情報技術 (IT) および通信、小売および電子商取引、ヘルスケア、その他) - 2031 年までの業界動向および予測。
MLOP 市場分析と規模
機械学習運用 (MLOps) とは、運用環境での機械学習モデルの導入、監視、管理を効率化および自動化するために使用される一連のプラクティスとツールを指します。MLOps は、機械学習ライフサイクル全体を通じて一貫性、信頼性、スケーラビリティを確保することで、機械学習モデルの開発と導入のギャップを埋めることを目的としています。
Data Bridge Market Researchは、2023年に76億2,000万米ドルであった世界のMLOP市場は、2031年までに116億9,000万米ドルに達し、2024年から2031年の予測期間中に5.5%のCAGRで成長すると予測しています。市場価値、成長率、市場セグメント、地理的範囲、市場プレーヤー、市場シナリオなどの市場洞察に加えて、Data Bridge Market Researchチームがまとめた市場レポートには、詳細な専門家分析、輸入/輸出分析、価格分析、生産消費分析、ペストル分析が含まれています。
レポートの範囲と市場セグメンテーション
レポートメトリック |
詳細 |
予測期間 |
2024年から2031年 |
基準年 |
2023 |
歴史的な年 |
2022(2016年から2021年にカスタマイズ) |
定量単位 |
売上高(10億米ドル)、販売数量(個数)、価格(米ドル) |
対象セグメント |
コンポーネント (プラットフォーム、サービス)、導入モード (オンプレミス、クラウド、ハイブリッド)、組織規模 (大企業、中小企業 (SME))、業種 (金融サービス (BFSI)、製造、情報技術 (IT) および通信、小売および電子商取引、ヘルスケア、その他) |
対象国 |
米国、カナダ、メキシコ、ブラジル、アルゼンチン、その他の南米諸国、ドイツ、イタリア、英国、フランス、スペイン、オランダ、ベルギー、スイス、トルコ、ロシア、その他のヨーロッパ諸国、日本、中国、インド、韓国、オーストラリア、シンガポール、マレーシア、タイ、インドネシア、フィリピン、その他のアジア太平洋諸国、サウジアラビア、UAE、南アフリカ、エジプト、イスラエル、その他の中東およびアフリカ諸国 |
対象となる市場プレーヤー |
Databricks (米国)、Domino Data Lab (米国)、Kubeflow (Google 社) (米国)、Amazon SageMaker (米国)、Paperspace Gradient (米国)、Fiddler AI (米国)、MLflow (Databricks 社) (米国)、Valohai (フィンランド)、Pachyderm (米国)、ZenML (ドイツ) |
市場機会 |
|
市場の定義
MLOps には、モデルの開発とトレーニングから展開、監視、管理まで、機械学習のライフサイクル全体を効率化するさまざまなソリューションとサービスが含まれます。これらの MLOps ツールは、データ サイエンスと本番環境の間のギャップを埋め、効率的なワークフロー、最適化されたモデル パフォーマンス、さまざまな業界の実際のアプリケーションへの機械学習モデルのスムーズな統合を保証します。
MLOP 市場の動向
ドライバー
- モデルのガバナンスと説明可能性の向上に対する需要の高まり
モデル ガバナンスと説明可能性の向上に対する需要の高まりは、世界の MLOps (機械学習運用) 市場を前進させる重要な原動力です。組織が機械学習モデルを運用に統合するケースが増えるにつれて、これらのモデルの信頼性、透明性、説明責任の確保が重視されるようになっています。強化されたモデル ガバナンスには、バージョン管理、コンプライアンス、リスク管理などの側面に対処しながら、機械学習モデルのライフサイクル全体を管理するための厳格なポリシーと制御を確立することが含まれます。さらに、説明可能性の強化の必要性から、モデルの決定を解釈し、関係者にモデルの動作に関する洞察を提供し、情報に基づいた意思決定を可能にするツールと手法の開発が促進されています。ガバナンスと説明可能性へのこの重点は、機械学習の展開において信頼、コンプライアンス、信頼性を促進する上で MLOps ソリューションが果たす重要な役割を強調し、それによって市場の成長を促進します。
- クラウドの導入と拡張性の向上
クラウド コンピューティングの採用拡大とスケーラビリティの追求は、世界の MLOps (機械学習オペレーション) 市場を推進する重要な原動力となっています。組織が機械学習インフラストラクチャをホストするためにクラウド プラットフォームを活用することが増えるにつれ、クラウド環境とシームレスに統合し、スケーラブルなモデルの展開と管理を容易にする MLOps ソリューションが緊急に必要になっています。クラウドベースの MLOps サービスは比類のない柔軟性を提供し、企業は変動する需要に応じて機械学習オペレーションを迅速に拡張できると同時に、コラボレーション、バージョン管理、リソースの最適化を合理化できます。その結果、クラウド採用の拡大とスケーラビリティ要件の融合により、効率的で俊敏かつスケーラブルな機械学習ワークフローを世界規模で編成する上で MLOps ソリューションが不可欠な役割を担っていることが強調されています。
機会
- 新興技術との統合
新興技術との統合は、世界の MLOps 市場にとって大きなチャンスとなります。人工知能 (AI)、エッジ コンピューティング、モノのインターネット (IoT)、ブロックチェーンなどの新しい技術が進化し続けるにつれて、これらの新興技術とシームレスに統合できる高度な MLOps ソリューションに対する相補的なニーズが生じています。MLOps のツールとプラクティスを活用することで、組織はさまざまな分野にわたる AI および機械学習イニシアチブの効率、信頼性、スケーラビリティを向上させることができます。新興技術との統合により、MLOps プラットフォームは、リアルタイム分析、予測メンテナンス、自律システム、パーソナライズされたユーザー エクスペリエンスなどの複雑なユース ケースに対応できるようになり、市場におけるイノベーションと競争上の差別化の新たな道が開かれます。
- 中小企業と個人開発者への注目の高まり
中小企業 (SME) と個人開発者への注目が高まることで、グローバル MLOps 市場にとって大きなチャンスが生まれます。機械学習と AI の採用が大企業を超えて拡大するにつれ、中小企業と個人開発者は、特定のニーズとリソースの制約に合わせた、アクセスしやすくコスト効率の高い MLOps ソリューションをますます求めるようになっています。市場のこの成長セグメントに対応するために、MLOps プロバイダーは、機械学習機能を活用して製品、サービス、運用を強化したいと熱望する膨大な潜在的顧客層に参入しています。さらに、中小企業と個人開発者にユーザーフレンドリーな MLOps プラットフォームを提供することで、高度な分析と自動化へのアクセスを民主化し、イノベーションを促進し、さまざまな業界とアプリケーションで機械学習テクノロジーの採用を促進できます。
制約/課題
- データセキュリティリスクの増大
データ セキュリティ リスクの増大は、世界の MLOP 市場にとって大きな課題となっています。個人を特定できる情報や独自のビジネス データなど、機械学習の運用で利用される機密データが急増するにつれ、データ侵害、不正アクセス、悪意のある攻撃の可能性がますます顕著になっています。トレーニングから展開、さらにそれ以降の MLOps ライフサイクル全体を通じてデータの機密性、整合性、可用性を確保するには、堅牢なセキュリティ対策と厳格なコンプライアンス標準の遵守が必要です。ただし、MLOps ワークフローの複雑さと、データ処理およびストレージの分散性が相まって、セキュリティ対策が複雑になり、サイバー脅威に対する脆弱性が高まります。
- MLOps ツールの複雑さ
MLOps ツールに関連する複雑さは、グローバル MLOps 市場にとって大きな課題となっています。これらのツールは機械学習モデルの管理と展開のための高度な機能を提供しますが、その複雑な性質が、特に専門知識やリソースが不足している組織にとっては、導入の障壁となることがよくあります。複雑な MLOps ツールを効果的に操作するには、広範なトレーニングと技術的な熟練度が必要になる場合があり、実装時間の延長、コストの増加、エラーのリスクの増加につながります。さらに、MLOps 分野での急速なイノベーションのペースがこの課題をさらに複雑にしており、組織は進化するテクノロジーとベスト プラクティスに遅れずについていくのに苦労しています。
この市場レポートでは、最近の新しい開発、貿易規制、輸出入分析、生産分析、バリュー チェーンの最適化、市場シェア、国内および現地の市場プレーヤーの影響、新たな収益源の観点から見た機会の分析、市場規制の変更、戦略的市場成長分析、市場規模、カテゴリ市場の成長、アプリケーションのニッチと優位性、製品の承認、製品の発売、地理的拡大、市場における技術革新などの詳細が提供されます。市場に関する詳細情報を取得するには、アナリスト ブリーフについて Data Bridge Market Research にお問い合わせください。当社のチームが、市場の成長を達成するための情報に基づいた市場決定を行うお手伝いをします。
最近の動向
- 2021 年 5 月、Google Cloud は、機械学習モデルの構築、トレーニング、デプロイのためのさまざまなサービスを統合し、AI 開発ライフサイクルを簡素化するマネージド機械学習プラットフォームである Vertex AI をリリースしました。この取り組みは、モデルの開発とデプロイのプロセスを合理化し、組織が AI の導入を加速し、ビジネス目標を効率的に達成できるようにすることを目的としています。
- 2019年9月、DataRobotはParallelMを買収した後、MLOpsソリューションを立ち上げ、モデル管理と監視機能を統合して、企業全体で機械学習モデルの集中的な導入、監視、ガバナンスを実現し、最終的にAI導入の効率を高めました。この取り組みは、機械学習ライフサイクル全体を自動化および管理するための包括的なソリューションを提供することで、組織がAIプロジェクトから測定可能な価値を引き出す際に直面する課題に対処することを目的としていました。
世界のMLOP市場の範囲
市場は、コンポーネント、展開モード、組織規模、および業界分野に基づいてセグメント化されています。これらのセグメント間の成長は、業界のわずかな成長セグメントを分析するのに役立ち、ユーザーに貴重な市場の概要と市場の洞察を提供し、コア市場アプリケーションを特定するための戦略的決定を下すのに役立ちます。
成分
- プラットフォーム
- サービス
展開モード
- オンプレミス
- 雲
- ハイブリッド
組織規模
- 大企業
- 中小企業
業界別
- 金融サービス (BFSI)
- 製造業
- 情報技術(IT)と通信
- 小売業と電子商取引
- 健康管理
- その他
MLOP 市場地域分析/洞察
市場は分析され、市場規模の洞察と傾向は、上記のように地域、コンポーネント、展開モード、組織規模、および業種別に提供されます。
市場がカバーする地域は、北米、南米、ヨーロッパ、アジア太平洋、中東およびアフリカです。グローバル MLOP 市場レポートでカバーされている国は、米国、カナダ、メキシコ、ブラジル、アルゼンチン、その他の南米、ドイツ、イタリア、英国、フランス、スペイン、オランダ、ベルギー、スイス、トルコ、ロシア、その他のヨーロッパ、日本、中国、インド、韓国、オーストラリア、シンガポール、マレーシア、タイ、インドネシア、フィリピン、その他のアジア太平洋、サウジアラビア、UAE、南アフリカ、エジプト、イスラエル、その他の中東およびアフリカです。
北米が世界の MLOps 市場を支配している理由はいくつかあります。この地域は、機械学習とデータ サイエンスを専門とするテクノロジー企業、研究機関、熟練した専門家の強力なエコシステムを誇り、イノベーションを促進し、市場でリーダーシップを発揮しています。さらに、北米には多くの大手クラウド サービス プロバイダーが拠点を置いており、多様なビジネス ニーズに対応するスケーラブルなインフラストラクチャと高度な MLOps ソリューションを提供しています。さらに、この地域の強力な規制環境と成熟したエンタープライズ市場が相まって、コンプライアンス、ガバナンス、リスク管理を確保するための MLOps プラクティスの広範な採用が促進されています。さらに、北米の起業家文化とベンチャー キャピタル エコシステムは、MLOps 分野のスタートアップ企業や新興企業の急速な成長を促進し、世界市場でのこの地域の優位性に貢献しています。全体として、技術的専門知識、サポート インフラストラクチャ、規制フレームワーク、起業家のダイナミズムの融合により、北米は世界中で MLOps の進歩と採用を推進する先駆者としての地位を確立しています。
アジア太平洋地域は、いくつかの重要な要因により、世界の MLOP 市場で最も急速に成長している地域として浮上しています。この地域では、さまざまな業界で急速なデジタル変革が見られ、ビジネスの効率性と競争力を高めるために機械学習と AI 技術の導入が進んでいます。アジア太平洋地域の組織がデータ主導の洞察の戦略的重要性を認識するにつれて、機械学習モデルの開発、展開、管理を合理化する MLOps ソリューションの需要が高まっています。
レポートの地域セクションでは、市場の現在および将来の傾向に影響を与える国内市場における個別の市場影響要因と規制の変更も提供しています。下流および上流のバリュー チェーン分析、技術動向、ポーターの 5 つの力の分析、ケース スタディなどのデータ ポイントは、個々の国の市場シナリオを予測するために使用される指標の一部です。また、地域データの予測分析を提供する際には、グローバル ブランドの存在と可用性、地元および国内ブランドとの競争が激しいか少ないために直面する課題、国内関税の影響、貿易ルートも考慮されます。
競争環境とMLOP市場シェア分析
市場競争環境は、競合他社の詳細を提供します。含まれる詳細には、会社概要、会社の財務状況、収益、市場の可能性、研究開発への投資、新しい市場への取り組み、世界的なプレゼンス、生産拠点と施設、生産能力、会社の強みと弱み、製品の発売、製品の幅と広さ、アプリケーションの優位性などがあります。提供される上記のデータ ポイントは、市場に関連する会社の焦点にのみ関連しています。
市場で活動している主要企業は次のとおりです。
- データブリックス(米国)
- ドミノデータラボ(米国)
- Kubeflow (Google 社) (米国)
- Amazon SageMaker (米国)
- ペーパースペースグラデーション(米国)
- フィドラーAI(米国)
- MLflow (Databricks 社) (米国)
- ヴァロハイ(フィンランド)
- パキダーム(米国)
- ZenML(ドイツ)
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。