ヘルスケア市場における世界の生成 AI
Market Size in USD Billion
CAGR : %
予測期間 |
2024 –2031 |
市場規模(基準年) |
USD 1.80 Billion |
Market Size (Forecast Year) |
USD 17.20 Billion |
CAGR |
|
主要市場プレーヤー |
ヘルスケア市場における世界の生成 AI、アプリケーション別 (個別治療、患者支援、患者モニタリングおよび予測分析、医療画像分析および診断、医薬品の発見および開発)、エンドユーザー別 (病院、専門クリニック、外来手術センター(ASC)、研究および学術機関、その他) – 2031 年までの業界動向および予測。
ヘルスケア市場における生成AIの分析と規模
信頼性が高く革新的なデータを作成し、診断を改善し、患者の反応を再現し、テストやトレーニングの目的で合成データセットを提供できることから、市場は生成 AI に注目しています。記事「2024 ライフ サイエンスとヘルスケアの生成 AI 展望調査」で報告されているように、ヘルスケア業界は生成 AI の変革の可能性を明らかにするために多額の投資を行っており、大手ヘルスケア企業の約 75% が現在、生成 AI の実験を行っているか、拡張を計画しています。このように、生成 AI への関心が高まることで、ヘルスケア セクターに新たな機会が生まれています。
Data Bridge Market Researchは、2023年に18億米ドルだったヘルスケアにおける生成AIの世界市場は、2031年までに172億米ドルに達し、予測期間中に32.60%のCAGRを達成すると予測しています。これは、市場価値を示しています。医療業界における変革的影響から生じたヘルスケアにおけるAIの需要の急増により、「パーソナライズされた治療」がヘルスケアにおける生成AIの世界市場のアプリケーションセグメントを支配しています。市場価値、成長率、セグメンテーション、地理的範囲、主要プレーヤーなどの市場シナリオに関する洞察に加えて、Data Bridge Market Researchがまとめた市場レポートには、詳細な専門家の分析、患者の疫学、パイプライン分析、価格設定分析、規制の枠組みも含まれています。
レポートの範囲と市場セグメンテーション
レポートメトリック |
詳細 |
予測期間 |
2024年から2031年 |
基準年 |
2023 |
歴史的な年 |
2022 (2016~2021年にカスタマイズ可能) |
定量単位 |
売上高(10億米ドル)、販売数量(個数)、価格(米ドル) |
対象セグメント |
アプリケーション(個別治療、患者支援、患者モニタリングおよび予測分析、医療画像分析および診断、新薬の発見および開発)、エンドユーザー(病院、専門クリニック、外来手術センター(ASC)、研究および学術機関、その他) |
対象国 |
米国、カナダ、メキシコ、英国、ドイツ、フランス、スペイン、イタリア、オランダ、スイス、ロシア、ベルギー、トルコ、その他のヨーロッパ諸国、中国、韓国、日本、インド、オーストラリア、シンガポール、マレーシア、インドネシア、タイ、フィリピン、その他のアジア太平洋諸国、南アフリカ、その他の中東およびアフリカ諸国、ブラジル、その他の南米諸国 |
対象となる市場プレーヤー |
Epic Systems Corporation(米国)、DiagnaMed Holdings Corp.(米国)、Syntegra(米国)、Merative(米国)、Google LLC(米国)、Oracle(米国)、Microsoft(米国)、NVIDIA Corporation(米国)、Insilico Medicine(米国)、Abridge AI, Inc.(米国)、ELEKS(エストニア)、Persistent Systems(インド) |
市場機会 |
|
市場の定義
ヘルスケアにおける生成 AI とは、新しいオリジナルデータの生成を伴う人工知能(AI) 技術の応用を指します。また、ヘルスケア分野では、合成医療画像の生成、ヘルスケアアルゴリズムのトレーニング用の仮想患者データの作成、病気の進行のシミュレーション、さらには新薬発見のための新しい分子の設計などのタスクに生成 AI が使用されています。
ヘルスケア市場におけるグローバル生成AIの動向
ドライバー
- AIと機械学習技術の進歩
人工知能 (AI) と機械学習 (ML) 技術の継続的な進歩により、生成 AI アルゴリズムの機能が大幅に強化されました。これらの進歩により、医療提供者は、創薬、医療画像分析、個別化医療、予測分析などのタスクに生成 AI を活用できるようになりました。
- パーソナライズされたヘルスケアソリューションの需要増加
個々の患者のニーズに合わせたパーソナライズされたヘルスケア ソリューションの需要が高まっています。生成 AI アルゴリズムは、ゲノム データ、患者記録、臨床試験などの大規模なデータセットを分析して、パーソナライズされた治療計画や治療法を開発できます。ヘルスケアに対するこのパーソナライズされたアプローチは、患者の転帰を改善し、ヘルスケア提供の効率を向上させることができます。
- 医薬品の発見と開発に対するニーズの高まり
製薬業界は、新薬の発見と開発において、開発期間の長さ、高コスト、成功率の低さなどの課題に直面しています。ジェネレーティブ AI テクノロジーは、分子構造の予測、潜在的な薬剤候補の特定、薬剤設計の最適化により、新薬の発見プロセスを加速させる可能性を秘めています。その結果、製薬会社は、新薬の発見と開発のプロセスを合理化するために、ジェネレーティブ AI ソリューションを採用するケースが増えています。
- 医療施設への投資増加
医療施設の状態の改善と医療インフラ全体の改善への注目が高まっていることも、市場の成長を促進するもう 1 つの重要な要因です。新しい改良技術の資金調達と適用に関する公的機関と民間企業間のパートナーシップと戦略的コラボレーションの数が増えていることで、さらに有利な市場機会が生まれています。
機会
- 医療画像解析の採用拡大
医療用画像は、病気の診断、治療計画、患者の転帰のモニタリングにおいて重要な役割を果たします。生成 AI アルゴリズムは、MRIスキャン、CT スキャン、X 線などの医療用画像データを分析し、医療従事者が異常を検出し、病気の進行を予測し、診断精度を向上させるのに役立ちます。医療用画像分析における生成 AI の採用の増加は、市場の成長を促進し、放射線学および診断用画像の分野に革命をもたらしています。
- ヘルスケア業務の効率化とコスト削減
生成 AI アプリケーションは、医療業務の効率化、反復タスクの自動化、医療施設全体でのリソース割り当ての最適化の機会を提供します。たとえば、生成 AI 駆動型予測分析により、患者の入院を予測し、人員配置レベルを最適化し、在庫管理を改善できるため、運用コストの削減、ワークフローの効率化、リソースの有効活用につながります。
拘束
- データのプライバシーとセキュリティに関する懸念
生成 AI アルゴリズムは、医療記録、ゲノム情報、診断画像など、大量の機密性の高い患者データにアクセスする必要があります。しかし、データ プライバシー、セキュリティ侵害、規制遵守に関する懸念が、広範な導入に対する大きな障壁となっています。医療機関は、米国の HIPAA や欧州連合の GDPR などの複雑な規制を順守して患者データの倫理的かつ安全な使用を確保する必要がありますが、これらの規制により、機関間でのデータ共有やコラボレーションが制限される可能性があります。
- 相互運用性と標準化の欠如
ヘルスケア業界は、電子医療記録 (EHR) システム、医療機器、データ形式の多様なエコシステムを網羅しており、相互運用性とデータ標準化の課題につながっています。一貫性のないデータ形式とサイロ化された情報システムは、生成 AI ソリューションを既存のヘルスケア ワークフローにシームレスに統合することを妨げています。標準化されたデータ形式と相互運用可能なシステムがなければ、ヘルスケア プロバイダーはデータに効率的にアクセスして交換することが困難になり、生成 AI アプリケーションの拡張性と影響が制限される可能性があります。
課題
- 倫理的および規制上の考慮事項
医療における生成 AI の導入は、説明責任、透明性、偏見、公平性に関連する複雑な倫理的および規制上の考慮事項を引き起こします。医療提供者は、患者の安全と信頼を確保するために、アルゴリズムの偏見、インフォームドコンセント、AI 主導の意思決定の解釈可能性などの問題に取り組む必要があります。さらに、規制機関は、医療における AI の使用を管理するために既存のフレームワークを適応させるという課題に直面しており、責任、監視、コンプライアンス要件に関する不確実性が生じています。
- 限られた臨床検証とエビデンスベース
生成 AI アルゴリズムは医療の提供と研究に革命を起こす可能性を秘めていますが、多くのアプリケーションには、実際の設定での有効性、精度、安全性を実証する強力な臨床検証と証拠がありません。医療提供者と規制当局は、生成 AI ソリューションが広く採用される前に、その信頼性と臨床的有用性を評価するための厳格な検証研究と臨床試験を要求しています。その有効性と信頼性を裏付ける十分な証拠がなければ、生成 AI テクノロジーは医療関係者から懐疑的な目で見られ、臨床診療への統合に消極的になる可能性があります。
このグローバルなヘルスケアにおける生成 AI 市場レポートでは、最近の新しい開発、貿易規制、輸出入分析、生産分析、バリュー チェーンの最適化、市場シェア、国内および現地の市場プレーヤーの影響、新たな収益源の観点から見た機会の分析、市場規制の変更、戦略的市場成長分析、市場規模、カテゴリ市場の成長、アプリケーションのニッチと優位性、製品の承認、製品の発売、地理的拡張、市場における技術革新などの詳細が提供されます。ヘルスケアにおけるグローバルな生成 AI 市場の詳細については、Data Bridge Market Research にアナリスト概要をお問い合わせください。当社のチームが、市場の成長を達成するための情報に基づいた市場決定を行うお手伝いをします。
最近の動向
- 2023年12月、メルクは創薬のための先駆的なソフトウェア・アズ・ア・サービスであるAiddisonを発表しました。このプラットフォームは、Synthia逆合成ソフトウェアアプリケーションプログラミングインターフェース(API)の統合を通じて仮想設計と製造可能性を統合しました。この立ち上げは、従来のプロセスと比較してプロセスを最大約70%高速化することで医薬品開発を迅速化することを目指していました。
- 2023年8月、コグニザントはGoogle Cloudとの連携を拡大し、ジェネレーティブAIを活用して管理プロセスを強化し、コストの最適化とユーザーエクスペリエンスの向上を目指しました。この協力関係は、ヘルスケアソリューションの強化、ビジネス効率の向上、ユーザーエクスペリエンスの向上を目的としていました。
ヘルスケア市場におけるグローバル生成AIの展望
ヘルスケア市場における世界の生成 AI は、アプリケーションとエンド ユーザーに基づいてセグメント化されています。これらのセグメントの成長は、業界のわずかな成長セグメントの分析に役立ち、ユーザーに貴重な市場概要と市場洞察を提供して、コア市場アプリケーションを特定するための戦略的決定を下すのに役立ちます。
応用
- パーソナライズされた治療
- 患者支援
- 患者モニタリングと予測分析
- 医療画像解析と診断
- 医薬品の発見と開発
エンドユーザー
- 病院
- 専門クリニック
- 外来手術センター(ASC)
- 研究・学術機関
- その他
ヘルスケア市場におけるグローバル生成AIの地域分析/洞察
ヘルスケア市場における世界的な生成 AI が分析され、上記のように国、アプリケーション、エンドユーザー別に市場規模の洞察と傾向が提供されます。
ヘルスケア市場における世界の生成 AI レポートで取り上げられている国は、米国、カナダ、メキシコ、英国、ドイツ、フランス、スペイン、イタリア、オランダ、スイス、ロシア、ベルギー、トルコ、その他のヨーロッパ諸国、中国、日本、インド、オーストラリア、韓国、シンガポール、タイ、マレーシア、インドネシア、フィリピン、その他のアジア太平洋諸国、ブラジル、その他の南米諸国、南アフリカ、その他の中東およびアフリカ諸国です。
北米地域は、ヘルスケアにおける AI の採用の増加、主要な市場プレーヤーの存在、および同地域における技術進歩の加速により、ヘルスケアにおける世界の生成 AI 市場を支配しています。
アジア太平洋地域では、遠隔医療とヘルスケアサポートの急速な必要性により、ヘルスケア市場における世界的な生成AIが大幅に成長すると予測されています。さらに、電気通信の近代化と発展により、今後数年間でこの地域のヘルスケア市場における世界的な生成AIの成長がさらに促進されると予想されています。
レポートの国別セクションでは、市場の現在および将来の動向に影響を与える国内市場における個別の市場影響要因と規制の変更も提供しています。下流および上流のバリュー チェーン分析、技術動向、ポーターの 5 つの力の分析、ケース スタディなどのデータ ポイントは、各国の市場シナリオを予測するために使用される指標の一部です。また、国別データの予測分析を提供する際には、グローバル ブランドの存在と可用性、および地元および国内ブランドとの競争が激しいか少ないために直面する課題、国内関税と貿易ルートの影響も考慮されます。
ヘルスケアインフラの成長 導入基盤と新技術の浸透
ヘルスケアにおける世界の生成 AI 市場では、各国の資本設備に対するヘルスケア支出の増加、ヘルスケアにおける世界の生成 AI 市場向けのさまざまな種類の製品のインストール ベース、ライフ ライン曲線を使用するテクノロジの影響、ヘルスケアの規制シナリオの変更、およびそれらがヘルスケアにおける世界の生成 AI 市場に与える影響に関する詳細な市場分析も提供されます。
ヘルスケア市場シェア分析における競争環境とグローバル生成 AI
ヘルスケア市場におけるグローバル生成 AI の競争状況は、競合他社ごとに詳細を提供します。詳細には、会社概要、会社の財務状況、収益、市場の可能性、研究開発への投資、新しい市場への取り組み、グローバルなプレゼンス、生産拠点と施設、生産能力、会社の強みと弱み、製品の発売、製品の幅と広さ、アプリケーションの優位性が含まれます。提供されている上記のデータ ポイントは、ヘルスケア市場におけるグローバル生成 AI に関連する企業の焦点にのみ関連しています。
ヘルスケア市場における世界的な生成 AI で活動している主要企業は次のとおりです。
- エピックシステムズコーポレーション(米国)
- ダイアグナメッドホールディングス(米国)
- シンテグラ(米国)
- メラティブ(米国)
- Google LLC(米国)
- オラクル(米国)
- マイクロソフト(米国)
- NVIDIA コーポレーション (米国)
- インシリコ・メディシン(米国)
- Abridge AI, Inc.(米国)
- ELEKS(エストニア)
- パーシステントシステムズ(インド)
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。