>世界のコマース人工知能市場、提供内容(ハードウェア、ソフトウェア、サービス)、プラットフォーム(eコマース、店舗内)、アプリケーション(顧客関係管理、モノのインターネット(IoT)、サプライチェーン分析、仮想パーソナルアシスタント、偽のレビュー分析、マーチャンダイジング、倉庫自動化、製品推奨、顧客サービス、eコマースマーケティング、製品カタログ最適化、フリート管理)、組織規模(大企業、中小企業(SME))、テクノロジー(ディープラーニング、機械学習、自然言語処理(NLP)、その他)、実装(クラウドホスティング、オンプレミス)、エンドユーザー(小売、電子機器、食品および飲料、ファッション、物流、BFSI)、国(米国、カナダ、メキシコ、ブラジル、アルゼンチン、その他の南米、ドイツ、フランス、イタリア、英国、ベルギー、スペイン、ロシア、トルコ、オランダ、スイス、その他のヨーロッパ、日本、中国、インド、韓国、オーストラリア、シンガポール、マレーシア、タイ、インドネシア、フィリピン、その他の国)アジア太平洋、UAE、サウジアラビア、エジプト、南アフリカ、イスラエル、その他の中東およびアフリカ) - 2029年までの業界動向と予測
コマース人工知能市場の市場分析と洞察
コマース人工知能市場は、2022年から2029年の予測期間に市場成長を遂げると予想されています。Data Bridge Market Researchは、上記の予測期間中に市場が7.87%のCAGRで成長すると分析しています。
商業用人工知能とは、基本的に商業目的で使用される人工知能を指します。人工知能 (AI) は、人間の知能をシミュレートしてプログラム可能なマシンを開発することを目的としたコンピュータサイエンスの分野です。人間のような音声認識、学習、計画、問題解決はすべて、AI 統合マシンで可能です。
AIベースのソリューションへの包括的な費用や、数兆バイトのオンラインデータから判断を生み出す機械化の増大などの要因は、コマース人工知能市場の成長を加速させる重要な要因として浮上すると予想されます。これに加えて、周囲の世界を認識、対話、概念化できる完全自律型ロボットの使用は、上記の予測期間中にコマース人工知能市場の成長をさらに加速させるでしょう。機器の故障を診断したり、製品の異常を検出したりするロボットの能力も、市場全体の成長を緩和すると予測されています。ただし、AIシステムの開発、管理、実装には特定のスキルを持つ労働力が必要であるため、市場の成長が抑制されます。
さらに、AI 技術を活用するための政府の取り組みの増加と投資の増加も、2022 年から 2029 年の予測期間にコマース人工知能市場に有利な機会を生み出すと予想されます。その一方で、データ セキュリティとプライバシーに関する懸念は、コマース人工知能市場にとって課題となるでしょう。
このコマース人工知能市場レポートは、最近の新しい開発、貿易規制、輸出入分析、生産分析、バリューチェーンの最適化、市場シェア、国内および現地の市場プレーヤーの影響、新たな収益源の観点から見た機会の分析、市場規制の変更、戦略的市場成長分析、市場規模、カテゴリ市場の成長、アプリケーションのニッチと優位性、製品の承認、製品の発売、地理的拡張、市場における技術革新の詳細を提供します。コマース人工知能市場の詳細については、アナリスト概要について Data Bridge Market Research にお問い合わせください。当社のチームが、情報に基づいた市場決定を行い、市場の成長を達成できるようお手伝いします。
世界の商取引人工知能市場の範囲と市場規模
コマース人工知能市場は、提供内容、プラットフォーム、アプリケーション、テクノロジー、実装、およびエンドユーザーに基づいてセグメント化されています。さまざまなセグメントの成長は、市場全体で普及すると予想されるさまざまな成長要因に関する知識を獲得し、コアアプリケーション領域とターゲット市場の違いを特定するのに役立つさまざまな戦略を策定するのに役立ちます。
- 提供内容に基づいて、コマース人工知能市場はハードウェア、ソフトウェア、サービスに分類されます。ハードウェアは、プロセッサ、メモリ、ネットワークに細分化されます。ソフトウェアは、アプリケーション プログラム インターフェイス (API) と機械学習フレームワークに細分化されます。サービスは、展開と統合、サポートとメンテナンスに細分化されます。
- プラットフォームに基づいて、コマース人工知能市場は、電子商取引と店舗内に分類されます。
- アプリケーションに基づいて、コマース人工知能市場は、顧客関係管理、モノのインターネット (IoT)、サプライ チェーン分析、仮想パーソナル アシスタント、偽のレビュー分析、マーチャンダイジング、倉庫自動化、製品推奨、顧客サービス、e コマース マーケティング、製品カタログ最適化、およびフリート管理に分類されます。
- 技術に基づいて、コマース人工知能市場は、ディープラーニング、機械学習、自然言語処理 (NLP) などに分類されます。機械学習は、ディープラーニング、教師あり学習、教師なし学習、強化学習、その他の技術に細分化されます。
- 実装に基づいて、コマース人工知能市場はクラウドホスティングとオンプレミスに分類されます。
- エンドユーザーに基づいて、コマース人工知能市場は小売、電子機器、食品・飲料、ファッション、物流、BFSI に分類されます。
コマース人工知能市場の国別分析
コマース人工知能市場が分析され、市場規模、数量情報が、上記のように提供、プラットフォーム、アプリケーション、テクノロジー、実装、およびエンドユーザー別に提供されます。
コマース人工知能市場レポートでカバーされている国は、北米では米国、カナダ、メキシコ、ヨーロッパではドイツ、フランス、英国、オランダ、スイス、ベルギー、ロシア、イタリア、スペイン、トルコ、その他のヨーロッパ諸国、アジア太平洋地域 (APAC) では中国、日本、インド、韓国、シンガポール、マレーシア、オーストラリア、タイ、インドネシア、フィリピン、その他のアジア太平洋地域 (APAC)、中東およびアフリカ (MEA) の一部としてサウジアラビア、UAE、イスラエル、エジプト、南アフリカ、その他の中東およびアフリカ (MEA)、南米の一部としてブラジル、アルゼンチン、その他の南米です。
北米は、2022年から2029年の予測期間中に主要企業の存在と人工知能業界への大規模な投資により、予測期間中に商取引人工知能市場を支配します。一方、アジア太平洋地域は、可処分所得の割合の増加、流通チャネルの強化、および電子商取引取引への大手市場プレーヤーの参入により、有利な成長を示し、同州での業界の繁栄に貢献すると予想されます。
コマース人工知能市場レポートの国別セクションでは、市場の現在および将来の動向に影響を与える国内市場における個別の市場影響要因と規制の変更も提供しています。消費量、生産拠点と量、輸出入分析、価格動向分析、原材料費、下流および上流のバリューチェーン分析などのデータポイントは、各国の市場シナリオを予測するために使用される主要な指標の一部です。また、国別データの予測分析を提供する際には、グローバルブランドの存在と可用性、地元および国内ブランドとの競争が激しいか少ないために直面する課題、国内関税と貿易ルートの影響も考慮されます。
競争環境と商取引人工知能市場シェア分析
コマース人工知能市場の競争状況は、競合他社ごとに詳細を提供します。含まれる詳細には、会社概要、会社の財務状況、生み出される収益、市場の可能性、研究開発への投資、新しい市場への取り組み、世界的なプレゼンス、生産拠点と施設、生産能力、会社の長所と短所、製品の発売、製品の幅と広さ、アプリケーションの優位性などがあります。提供されている上記のデータ ポイントは、コマース人工知能市場に関連する企業の焦点にのみ関連しています。
コマース人工知能市場レポートで活動している主要企業には、Huawei Technologies Co., Ltd.、SAMSUNG、Qualcomm Technologies, Inc.、NVIDIA Corporation、Hewlett Packard Enterprise Development LP、Cisco Systems, Inc.、IBM、Amazon Web Services Inc.、Oracle、Google LLC、Broadcom.、Descartes Labs, Inc.、Wipro Limited.、Deere & Company、Granular, Inc.、aWhere Inc.、Apple Inc.、Microsoft、MediaTek Inc.、ANKI.、SoundHound Inc. などがあります。
最近の動向
- 2020 年 12 月、IBM は、企業の AI 導入拡大を支援するために Watson の機能を強化しました。Watson の新機能は、AI 自動化の改善と AI 予測の精度向上を目指しています。NLP の助けを借りて、IBM Discovery はクライアントのクエリに対してより正確な回答を提供できるようになります。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。