モノのインターネット (IoT) は、世界の人々にとって変革の経験であり、革命です。 IoT は何十億もの人々の生活に勢いよく浸透しており、IoT の使用によって影響を受けるのは、すべての地域や地域ではなく、生きている個人の一部 (大部分ではあるが) だけであり、今後数年間も減速する気配はありません。世界の個人。 IoT 自体は、これまでの短い寿命の間に数多くの変革と革新を経てきました。 2018 年に世界が経験した主要なイノベーションとトレンドの一部、および 2019 年に予想される主要なイノベーションとトレンドの一部を以下で精査します。
2018年
- ヘルスケア、産業、小売における IoT の成長 – 2018 年を通じて観察された主要な傾向の 1 つは、ヘルスケア、産業、小売分野における IoT とそれに伴うメリットの大幅な導入でした。 IoT の大幅な普及とブームにより、主要セグメントのほとんどで IoT が導入されました。しかし、大きな驚きは、前述のセグメントで顕著な成長が見られたことです。 IoT の使用に伴うメリットと運用の容易さは、この採用の主な要因の 1 つです。 IoTはウェアラブルデバイス、工場の自動化、商品のサプライチェーンの透明性などの形で導入されています。
- モバイル相互運用性 – モバイルの相互運用性とは、簡単に言えば、インターネットを介して接続された自動化された機器やデバイスの操作を処理することです。これは単に、モバイル デバイスに接続されている、これらの機器に物理的に接続する必要のないデバイスのステータス、効率、有効性を見落とすことになります。ファクトリーオートメーションでは、機器やデバイスの大部分は、個人の物理的なインタラクションではなく、このモバイルインタラクションを通じて提供されるタスクやコマンドに基づいて動作します。そのためには、モバイル接続デバイスを通じて運用サイクル全体を監視する必要があります。このトレンドは、「スマート ホーム」の出現に加え、産業における IoT (つまり、インダストリー 4.0) の導入に関連した成長により、大きな需要が生じました。
- エッジコンピューティング – エッジ コンピューティングは、クラウド ストレージとデータにアクセスしようとするユーザーの間の物理インフラストラクチャ インターフェイスです。エッジ コンピューティングは、クラウドのサイズとユーザーから孤立した性質により、遅延が発生し、ユーザーがクラウドからデータにアクセスできないという問題を解決するために作成されました。エッジ コンピューティングは、物理ストレージおよびインターフェイス インフラストラクチャであり、これらのストレージ インフラストラクチャにある程度のデータを保持し、より高速で簡単にアクセスできるサービスをユーザーに提供するのに役立ちます。さらに重要なのは、これらのインフラストラクチャがユーザーのより近くに存在するため、ユーザーのアクセスが容易になることです。 IoT の世界的な出現と普及以来、生成される大量のデータにより、この傾向は大きな需要とアプリケーションを監視してきました。
- データの収集 – 主要なマーケティングおよび販売組織は、現在トレンドとなっている消費者の行動に加えて、個人の好みを決定し、ターゲットとする経路を決定するために IoT の使用を採用しています。 IoT のデータ収集は、インターネット上で行われる検索、ソーシャル ネットワーク上で行われる活動、オンライン ショッピングの習慣、および他の素材に対する個人の嗜好における一部の素材の再現性から行われるデータの収集として定義できます。このデータの生成は、消費者の個人的な好みや特定の地域における現在の消費者の傾向を判断するのに役立ちます。
- 分析 – IoT の導入により生成されるデータの量が増えたため、生成される膨大な量のデータを理解する必要性が高まっています。その結果、分析が導入され、作成されたデータのタイプを特定し、次の行動方針を特定するのに役立ちます。たとえば、データを有用なものに分類する、さらなるマーケティング目的でデータを使用する、データを保存するなどです。データ分析では、生成されたデータセットのタイプの分類、それらがアクションを起こすのに十分有用であるか保存されているか、不適切なデータセットを処分することなどをカバーします。
2019年
- 人工知能 - IoT における AI (人工知能) の普及は需要があり、来年の主要なトレンドの 1 つになると予想されています。IoT への人工知能の組み込みは、デバイスや機器を自立型に変革し、モバイル デバイスから与えられた単純なタスクをデバイスが理解できるようにし、機械学習を組み込み、生成されたデータを分析し、特定のデータ セットによってアクションを起こすというシンプルなものにすることができます。IoT における AI の主な用途は、スマート ホーム、スマート ミラー、工場自動化、自律走行車、電子機器や電化製品です。
- ハードウェアとソフトウェアの革新 – エンドユーザー向けの主要アプリケーションにおける IoT の採用と需要の増加により、ユーザー エクスペリエンスの品質とデバイスのパフォーマンスにおける革新の強化が求められています。これにより、さまざまなデバイスや機器に取り付けられ、操作に使用されるセンサーのパフォーマンスが向上しました。消費者の主な要求の 1 つは、過剰な電力消費なしでコマンド セットとデータ セットを処理する処理速度と機能に基づく、デバイスのパフォーマンス レベルの向上です。これにより、これらのデバイスと機器のハードウェアとソフトウェア全体の革新に重点が置かれ、デバイスと機器がより完成し、より効率的かつ効果的に相互に連携して動作できるようになることが期待されます。たとえば、mmWave センサーの主なアプリケーション、シリコン ベースのチップセットとプロセッサなどです。
- 5Gベースのテクノロジー – 5G はもう 1 つの技術革新であり、大手通信会社が技術革新やより高帯域幅とセルラー技術の立ち上げ競争で最後尾になることを望まないため、大きな需要が見込まれています。ただし、主要な通信組織による大きな貢献や革新は見られないため、5G とそれに付随するテクノロジーの導入は慎重に扱う必要があります。にもかかわらず、5G の概念はさまざまな会議や組織的なプレビューで提示され、これまでに見たことのない帯域幅、大幅なデータ速度、600 MHz スペクトルのサポートを示唆しています。これらすべての機能を大幅に低コストで提供し、広いカバーエリアを実現し、IoT 導入向けの特定のアプリケーションを提供します。
- 顧客志向の規定 – 重要なデータセットの収集とこれらの特定のデータセットの分析により、市場における顧客体験と個人の行動に基づくサービスと商品が向上しました。たとえば、特定の検索や好み指向のタスクのために電子デバイスや電化製品で人工知能を使用するたびに、私たちは自分の特定の行動や好みをデータベースに登録することになります。この特定のデータは、主要な組織にデータベースを提供して取り組みを集中させ、その後消費者のニーズに基づいて商品やサービスを具体的に提供するのに役立ちます。
- 安全なインフラストラクチャ – IoT とデバイスの相互接続性の主な脅威の 1 つは、ユーザーのデータが盗まれるという脅威です。消費者のニーズに応えるために膨大な量のデータセットが生成および保存されているため、これらのデータセットがハッキングされたり盗まれたりする事例がありました。その結果、ユーザーのプライバシーを重視したより安全なインフラストラクチャに対する大きな需要が生じ、より複雑なデータ構造と高度に強化された安全なインフラストラクチャの必要性が生じています。