IRBバルセロナの構造バイオインフォマティクスとネットワーク生物学の研究チームは、化合物の治療可能性を評価する鍵となる、化合物の生物学的活性を予測するツールを開発しました。研究者は人工ニューラルネットワークを使用して100万の化合物の実験データを取得し、各タイプの分子を評価するための多くのツールを開発しました。ICREAの研究者であるパトリック・アロイ博士が率いる構造バイオインフォマティクスとネットワーク生物学チームは、ディープラーニング計算モデルを使用して100万の分子に関する生物学的活性情報の収集を完了し、実験データが利用できない場合でも、あらゆる分子の生物学的活性を予測するツールを導入しました。
この新しい方法は、同じ研究室が開発し、2020年にリリースされた、偽造医薬品のこれまでで最大の生物活性プロファイルデータベースであるChemical Checkerに基づいています。データベースは、各分子の25の生物活性領域から情報を収集します。これらの領域は、分子の化学構造、相互作用するターゲット、臨床レベルまたは細胞レベルで引き起こす変化に関連しています。ただし、ほとんどの化合物では、作用機序に関するこの詳細な情報は不完全です。つまり、特定の化合物について、利用可能な生物活性領域の情報は1つまたは2つある可能性がありますが、25すべてがあるわけではありません。開発中のこの新しい発見により、研究者は利用可能なすべての実験情報をディープラーニング技術と比較して、化学レベルから臨床レベルまで、すべての化合物のすべての活性プロファイルを完成させます。
この新しいツールにより、新しい分子の生物学的活性空間を予測することも可能になり、これは、最も適切な候補を選択し、何らかの理由で機能しない候補を破棄できるため、創薬プロセスに不可欠です。