ボルダー大学の研究者らは、高度なコンピューターシミュレーションと人工知能を組み合わせて、携帯電話のトランジスター故障などの電子機器の故障の予測と検出を試みるという大きな一歩を踏み出した。
この研究は航空宇宙エンジニアで物理学者のサンガミトラ・ネオギ氏が主導し、npj Computational Materials誌に掲載された。ネオギ氏と他の研究者は、原子でできた小さな構成要素の物理特性をマッピングし、機械学習技術を使用して、同じ構成要素でより大きな構造物を作る方法を推定した。「これは、レゴブロック1個を見て、はるかに大きな城の強度を予測するのに少し似ています。私たちは、数十億の原子を持つデバイスの物理特性を理解しようとしています」と、航空宇宙工学科学部の助教授であるネオギ氏は、アン・ミード氏とHJ・ミード氏に語った。
これは、電気自動車や携帯電話から、新興の量子コンピューターまで、私たちの日常生活を構成する電子機器に恩恵をもたらす可能性のある探求です。ネオギ氏によると、エンジニアはいつの日か、チームの手法を使って電子部品の設計上の欠陥を予測できるようになるでしょう。このプロジェクトは、原子の動きのような非常に小さなものの世界が、人々が新しい、より効率的なコンピューターを作るのにどのように役立つかという、ネオギ氏の幅広い焦点の一部です。「デバイスが故障する理由を見つけるのに何年も待つのではなく、私たちの手法を使えば、デバイスを作る前に、そのデバイスがどのように動作するかを事前に知ることができます」とネオギ氏は言います。