人工知能(AI)は現在、ほぼすべての分野で使用されており、作業負荷を大幅に軽減するため、人々は機械学習と人工知能に大きく依存しています。チップ業界は急速に成長しており、多くの業界で大規模に使用されているため、その生産も急速に増加しています。現在、コンピューターチップは、原子層堆積(ALD)と呼ばれる特殊な技術を使用して製造されており、原子1個の厚さの薄膜を作成することができます。この技術は半導体デバイスの開発に広く使用されていますが、リチウム電池、太陽電池、その他のエネルギー関連分野にも応用されています。
今日、メーカーは新しいタイプのフィルムを作るためにますます ALD に頼っていますが、新しい材料ごとにプロセスを微調整する方法を見つけるのに時間がかかります。問題の一部は、研究者が最適な成長条件を決定するために主に試行錯誤していることです。しかし、この科学分野で最初の研究の 1 つである最近発表された研究は、人工知能 (AI) の使用がより効率的である可能性があることを示唆しています。ACS 応用材料およびインターフェース研究では、米国エネルギー省 (DOE) のアルゴンヌ国立研究所の研究者が、AML プロセスの自律的最適化のためのいくつかの AI ベースのアプローチについて説明しています。彼らの研究は、各アプローチの相対的な長所と短所、およびより効率的かつ経済的に新しいプロセスを開発するために使用できる洞察について説明しています。「これらのアルゴリズムはすべて、サンプルをリアクターに入れ、取り出し、測定するなど、今日の通常のように時間を無駄にしないため、最適な組み合わせに収束するはるかに速い方法を提供します。これは、リアクターに接続されたリアルタイム ループです」と、この研究の共著者であるアルゴンヌの上級材料科学者 Angel YangausGil 氏は述べています。