概要

自動機械学習 (AML) は、人間ではなくアルゴリズムを使用して学習モデルを作成することで、パラメータの選択やデータのクリーニングなど、多くの反復的で退屈なプロセスを削減するのに役立ちます。仮説を立ててテストするプロセスは、データサイエンスのコンポーネントである機械学習によって継続されます。autoML の目標は、これらのプロセスを自動化して、アクセス可能な機能、アルゴリズム、ハイパーパラメータの範囲内で最適なアルゴリズムを見つけることです。autoML により、ML ワークフローの反復プロセスのインテリジェントな自動化が容易になると期待されています。これにより、価値の高いリソースを単調な作業から、価値を提供する最高のパフォーマンスのモデルの分析と評価に移行できるようになります。その結果、モデルとそれに基づくソリューションの作成にかかる時間が大幅に短縮されます。

AutoML システムは、ほぼ最適なパフォーマンスを達成できるほど迅速に予測モデルを作成できますが、その範囲はまだ限られており、その完全な可能性はまだ実現されていません。AutoML は、エンジニアリングやデータ準備でますます普及していますが、エンジニアリングというよりはむしろ芸術である、ドメイン依存度の高いアプリケーションもまだいくつかあります。AutoML は、大きな進歩を遂げているアクティブな研究テーマであるため、ML ベースのソリューションの採用を加速させる上で重要な役割を果たすでしょう (完全なモデル開発プロセスの自動化における既存の課題に取り組んでいるプレーヤーが数社あります)。

クライアントの課題

クライアントは、自動機械学習 (AML) に関連する機会と課題を分析したいと考えていました。クライアントの主な目的は、より優れた意思決定、低コスト、効率性の向上、革新に対する今後の顧客の要求に合わせてソリューションを提供し、技術進歩の最前線に留まることで競争上の優位性を獲得することです。

クライアントから要求された要件は次のとおりです。

  • 地域レベルと国レベルの両方における総市場規模(TAM)と前年比成長率
  • 現在および将来の技術動向と、実装時に直面する課題
  • 市場シェア、追跡可能な収益、戦略的取り組み、技術の採用、ベンダー選択基準などを含む、主要および新興企業の企業比較分析
  • さまざまなプレーヤーによる投資戦略と資金調達
  • 市場機会と魅力の評価
  • 自動機械学習 (AML) の新しいアプリケーション
  • 国レベルでの規制要件とコンプライアンス

DBMRアプローチ/研究方法論

DBMR は、市場環境の包括的な分析を実施し、関連するトレンドを特定し、クライアントを導くための実用的な洞察を提供しました。私たちは、三脚モデルに従ってデータを分析および検証し、クライアントの要件に基づいた貴重な洞察を提供しました。自動機械学習 (AML) を分析および推定するための DBMR のアプローチまたは研究方法論を以下に説明します。

私たちのアプローチでは、一次研究と二次研究の両方の方法論を使用して、データを推定、分析、検証します。

DBMR は、データ分析と検証のためにトップダウンとボトムアップの両方の方法で二次調査と一次調査を実施しました。このアプローチは、世界、地域、国レベルのデータで、各セグメントの定性的データと定量的データの両方にアクセスするために使用されました。

  • 二次調査は、さまざまな政府機関が発行したデータ、認定出版物、投資家向けプレゼンテーション、SEC提出年次報告書、企業ウェブサイト、ジャーナル、ホワイトペーパー、著名な著者などの記事で構成されています。
  • 一次調査には、コールドコール、LinkedIn、電子メールなどを通じて、さまざまな一次回答者、主要な業界関係者、主題専門家(SME)、主要な市場プレーヤーのCレベル幹部、業界コンサルタントとの詳細なインタビューが含まれ、定性的および定量的情報を検証します。これは基本的に、現地にいる当社の専任一次チームと個人(第三者)によって実行されます。さらに、ディスカッションベースのアプローチを実施するために、構造化データポイントと非構造化データポイントの両方を組み込んだ徹底的なアンケートとディスカッションガイドも用意しています。

クライアントの要件を分析するために、上記の方法論が採用されました。

  • 市場規模はトップダウンとボトムアップの両方のアプローチを考慮して算出された。
  • 競合分析: 追跡可能な収益、ソリューションの提供、強みと弱み、市場シェア、地理的範囲、戦略的イニシアチブ、投資と資金調達などに基づく企業分析により、競争上の優位性を獲得するために、主要ベンダー、見込みベンダー、市場破壊者、ニッチプレーヤーを特定します。
  • 市場全体に影響を与える推進要因、制約、機会、課題などの要因も研究されました。
  • 互換性と複雑性の問題、代替技術の存在、規制環境と協力、COVID-19、ロシアとウクライナの戦争など、内外の要因が需要と供給の両面に与える影響
  • この市場の潜在的顧客を分析するための徹底的な調査とともに、規制環境の徹底的な評価も実施されました。さらに、クライアントの利害関係者との緊密な協力により、この市場が大きな価値をもたらす可能性のある特定のアプリケーションやユースケースを特定することができます。

したがって、上記のアプローチに従うことで、それに応じて市場の洞察がクライアントに提供されました。

ビジネスソリューション

自動機械学習 (AML) ソリューション市場を分析する際に提供されるソリューションは次のとおりです。

  • 各セグメントの市場潜在力を理解するために、世界、地域、国レベルでの自動機械学習(AML)ソリューションの市場規模とCAGRが提供されました。
  • 自動機械学習 (AML) に関する詳細な分析と、データの正規化、データのクリーニング、データ変換などの実装動向が国レベルで提供されました。AML は、コストの最小化、結果 (データ分析) と意思決定の迅速化、パフォーマンスの向上による運用の合理化、競争上の優位性の向上に役立ちます。
  • 市場競争を特定し、競争上の優位性を獲得するために、企業プロファイリング、ポジショニングとアプリケーション グリッド、企業ランドスケープ、SWOT、戦略的イニシアチブなどの観点から企業比較分析が共有されました。
  • クラウドベースのコンピューティング、AI、ロボット工学などの技術進歩に関する洞察や、市場全体に影響を与えるその他の市場機会と課題も提供されました。クラウド モデルはオンプレミス モデルよりもアクセスしやすく、拡張性と柔軟性に優れていることがわかっています。さらに、これは従量課金モデルであるためコスト効率に優れており、あらゆる組織、特に中小企業にとって非常に役立ちます。
  • 地域的フットプリントでは、BFSI、ヘルスケア、小売など、さまざまなエンドユーザー業界で機械学習導入の需要に応える大手企業の存在により、北米が最大の市場シェアを占めています。

ビジネスへの影響

クライアントは、市場の競争力、今後の技術導入、さまざまな国の著名なエンドユーザーのニーズに応えるのに役立つ戦略的なステップ/計画について明確な洞察力を持っていました。同社は、バイヤーの購買行動のさまざまなポイントで最も効果的なソリューションを提供する最新の自動化サービスを通じて、コンバージョン率を向上させました。

結論

Data Bridge Market Research は、各要件に対応するために、自動機械学習 (AML) 市場に関連する詳細な洞察を提供しています。これに加えて、レポートの事実に基づいた統合情報は、クライアントがテクノロジーの浸透の観点から会社の成長を評価するのに役立ち、意思決定や将来の計画にも活用できます。これとは別に、クライアントはレポートの情報からビジネス チャンスにアクセスしたり、それを捉えたりすることもできます。

すぐにアクセス

お問い合わせ