概要
自動機械学習 (AML) は、人間ではなくアルゴリズムを使用して学習モデルを作成することで、パラメータの選択やデータのクリーニングなど、多くの反復的で退屈なプロセスを削減するのに役立ちます。仮説を立ててテストするプロセスは、データサイエンスのコンポーネントである機械学習によって継続されます。autoML の目標は、これらのプロセスを自動化して、アクセス可能な機能、アルゴリズム、ハイパーパラメータの範囲内で最適なアルゴリズムを見つけることです。autoML により、ML ワークフローの反復プロセスのインテリジェントな自動化が容易になると期待されています。これにより、価値の高いリソースを単調な作業から、価値を提供する最高のパフォーマンスのモデルの分析と評価に移行できるようになります。その結果、モデルとそれに基づくソリューションの作成にかかる時間が大幅に短縮されます。
AutoML システムは、ほぼ最適なパフォーマンスを達成できるほど迅速に予測モデルを作成できますが、その範囲はまだ限られており、その完全な可能性はまだ実現されていません。AutoML は、エンジニアリングやデータ準備でますます普及していますが、エンジニアリングというよりはむしろ芸術である、ドメイン依存度の高いアプリケーションもまだいくつかあります。AutoML は、大きな進歩を遂げているアクティブな研究テーマであるため、ML ベースのソリューションの採用を加速させる上で重要な役割を果たすでしょう (完全なモデル開発プロセスの自動化における既存の課題に取り組んでいるプレーヤーが数社あります)。
クライアントの課題
クライアントは、自動機械学習 (AML) に関連する機会と課題を分析したいと考えていました。クライアントの主な目的は、より優れた意思決定、低コスト、効率性の向上、革新に対する今後の顧客の要求に合わせてソリューションを提供し、技術進歩の最前線に留まることで競争上の優位性を獲得することです。
クライアントから要求された要件は次のとおりです。
DBMRアプローチ/研究方法論
DBMR は、市場環境の包括的な分析を実施し、関連するトレンドを特定し、クライアントを導くための実用的な洞察を提供しました。私たちは、三脚モデルに従ってデータを分析および検証し、クライアントの要件に基づいた貴重な洞察を提供しました。自動機械学習 (AML) を分析および推定するための DBMR のアプローチまたは研究方法論を以下に説明します。
私たちのアプローチでは、一次研究と二次研究の両方の方法論を使用して、データを推定、分析、検証します。
DBMR は、データ分析と検証のためにトップダウンとボトムアップの両方の方法で二次調査と一次調査を実施しました。このアプローチは、世界、地域、国レベルのデータで、各セグメントの定性的データと定量的データの両方にアクセスするために使用されました。
クライアントの要件を分析するために、上記の方法論が採用されました。
したがって、上記のアプローチに従うことで、それに応じて市場の洞察がクライアントに提供されました。
ビジネスソリューション
自動機械学習 (AML) ソリューション市場を分析する際に提供されるソリューションは次のとおりです。
ビジネスへの影響
クライアントは、市場の競争力、今後の技術導入、さまざまな国の著名なエンドユーザーのニーズに応えるのに役立つ戦略的なステップ/計画について明確な洞察力を持っていました。同社は、バイヤーの購買行動のさまざまなポイントで最も効果的なソリューションを提供する最新の自動化サービスを通じて、コンバージョン率を向上させました。
結論
Data Bridge Market Research は、各要件に対応するために、自動機械学習 (AML) 市場に関連する詳細な洞察を提供しています。これに加えて、レポートの事実に基づいた統合情報は、クライアントがテクノロジーの浸透の観点から会社の成長を評価するのに役立ち、意思決定や将来の計画にも活用できます。これとは別に、クライアントはレポートの情報からビジネス チャンスにアクセスしたり、それを捉えたりすることもできます。