記事

2022年12月19日

人工知能による創薬の変革

最近、人工知能 (AI) の使用が急速に増加しています。ほぼすべての分野で AI の使用が増加しています。AI の適応により、多くのことがよりスムーズになっています。AI をめぐる誇大宣伝が加速するにつれて、大手市場プレーヤーや商人は、自社の製品やサービスが AI をどのように使用しているかを宣伝するために躍起になっています。人工知能とは、主にコンピューター システムを介して、機械による人間の知能プロセスの再現です。通常、AI と呼ばれるものは、機械学習などの AI の 1 つのコンポーネントにすぎません。AI では、機械学習アルゴリズムの作成とトレーニングにハードウェアとソフトウェアの組み合わせが必要です。Python、R、Java など、AI に似たいくつかのプログラミング言語が人気です。

当社の DBMR チームは、機械学習運用化ソフトウェア市場を調査し、2022 ~ 2029 年の予測期間中、北米が機械学習運用化ソフトウェア市場を支配し、この地域における主要なキープレーヤーの存在と技術革新の増加により、予測期間中も優位の傾向が続くことを確認しました。市場は、2022 ~ 2029 年の予測期間中、44.7% の CAGR を示すことが予想されます。

この研究の詳細については、以下をご覧ください。 https://www.databridgemarketresearch.com/jp/reports/global-machine-learning-operationalization-software-market

AIの歴史

AI は、データ量の増加、高度なアルゴリズム、コンピューティング能力とストレージの改善により、最近ますます普及していますが、この用語が導入されたのは 1956 年のことです。その時点では、問題解決や記号的手法などのテーマが研究されていました。1960 年代には、米国国防総省がこの分野に真剣に興味を持ち、コンピューターをトレーニングして人間の基本的な推論を模倣し始めました。たとえば、国防高等研究計画局 (DARPA) は、1970 年代に街路地図作成プロジェクトを完了しました。この初期の取り組みにより、今日のコンピューターに見られる自動化と形式的推論への道が開かれました。これには、人間の能力を補完および強化するように設計された意思決定支援システムやスマート検索システムが含まれます。

AIが世界を変える

AI は、オンライン検索の推奨、チャットボット、音声アシスタントなど、私たちの生活に大きなメリットをもたらしています。日を追うごとに、AI は私たちの生活に欠かせないものになりつつあります。AI は将来、さまざまな分野で生産率と生産性の向上につながるため、多大なメリットをもたらすでしょう。現在も、そして近い将来も、人工知能による自動化は時間がかかります。何時間もかかる手作業を自動化できます。AI はどこにでも適用できます。交通状況や天候を予測するなど、あらゆる場所で使用できます。AI における自動化の使用は、他のメリットの中でも大きなメリットの 1 つです。

人工知能の利点

Pharmaceutical Market of AI at a Glance

  • ヒューマンエラーの削減

人工知能は、いわゆる「ヒューマンエラー」を減らすのに役立ちます。人間はミスを犯すものですが、コンピュータシステムではそうではありません。コンピュータは、正しくプログラムされていれば、こうしたミスをしません。AIは、特定のアルゴリズムセットを通じて以前に収集された情報を適用することで、効果的に実行されます。したがって、この点でエラーは最小限に抑えられ、より高い精度を実現できる可能性が高くなります。

  • 人間の代わりにリスクを負う

AI ロボットの助けを借りれば、人間が抱えるいくつかの危険な制約を克服することができ、AI ロボットは人間に代わって難しいことを行うことができます。これが人工知能の最も重要な利点の 1 つです。

たとえば、ウクライナのチェルノブイリ原子力発電所の爆発を振り返ってみると、当時は放射線の影響を最小限に抑えるのに役立つ AI 搭載ロボットは存在していませんでした。AI ロボットは火災を最小限に抑えることで、大勢の人々の救世主となることができたはずです。AI ロボットは、介入が危険を伴うような場合に使用できます。

  • 完全な可用性

休憩を別にすれば、平均的な人間は 1 日約 4 ~ 6 時間働きます。人間にとって、一日中働くことは困難で不可能です。ワーク ライフ バランスを維持し、個人的な責任を負い、退屈な仕事のプレッシャーに対処するのは困難です。時には、一部の仕事は不可欠であり、特定のタイムラインで完了する必要がありますが、不可能な場合もあります。AI を使用すると、機械を 24 時間 365 日休みなく働かせることができます。人間とは異なり、機械は退屈することさえありません。

  • 研究を支援する

AI により、研究者はさまざまなソースからの大量のデータに打ち勝つことができます。リアルタイム データがあれば、簡単に翻訳できる限り、研究者は利用可能な幅広い情報から恩恵を受けることができます。小児がんデータ ラボなどの医療研究機関は、医療従事者が幅広いデータ収集をより適切に管理するための便利なソフトウェアを開発しています。AI は、病気の進行を防ぐために症状を評価および検出するためにも広く使用されています。遠隔医療ソリューションは、患者の進行を追跡し、重要な診断データを回復し、共有ネットワークへの人口情報の提供を支援するために実行されています。

  • 医師のストレスを軽減

最新の調査レポートによると、プライマリードクターの半数以上が、締め切りのプレッシャーや職場のその他の要因からストレスを感じています。AI は、手順の合理化、機能の自動化、データの即時共有、運用の整理を支援し、一般的に医師がさまざまなことを同時に行わなくて済むようにするのに役立ちます。ただし、AI は、たとえば診断の説明など、より時間のかかる操作を支援することができるため、医療専門家はストレスの軽減を経験する可能性があります。」

  • より安全な手術

外科医は、そうでなければ開腹手術が必要になるような狭いスペースで手術を行うためのスキルのレベルが向上します。AI はこの点で役立っており、手術における適切なニーズに貢献することで、医療用ロボット工学において適切な位置を占めています。ロボットは敏感な臓器や組織の周りでより正確に作業でき、感染のリスク、術後の痛み、失血を減らすことができます。ロボット手術には、必要な切開が小さいため傷跡が少なく、回復に時間がかかるなど、さらに多くの利点があります。たとえば、オランダのマーストリヒト大学医療センターは、2017 年に AI 支援ロボットを使用して、0.03 ミリメートルを超える小さな血管を縫合しました。ロボットは外科医によって操作および管理され、外科医の手の動きがロボットの手によって実行される正確な動作に変換されます。

当社の DBMT チームは婦人科ロボット手術市場を調査し、地域住民の間で低侵襲手術の需要が高まっているため、北米が婦人科ロボット手術市場を独占していることを確認しました。アジア太平洋地域は、女性の健康と医療費に対する意識の高まりにより、予測期間中に大幅な成長が見込まれています。婦人科ロボット手術市場で活動している主要企業には、BOWA-electronic GmbH & Co. KG、Prima Medical、XCELLANCE Medical Technologies、ATMOS MedizinTechnik GmbH & Co. KG、Ethicon US、LLC、Johnson & Johnson Services、Inc.、Parkell、Inc. などがあります。

この研究の詳細については、以下をご覧ください。 https://www.databridgemarketresearch.com/jp/reports/global-gynecology-robotic-surgery-market

  • 予防ケアの強化

AI と機械学習は、感染症の予防と管理に役立ちます。アウトブレイク インテリジェンス プラットフォームである Blue Dot は、航空券と飛行経路を分析して、武漢からバンコク、ソウル、台北までの COVID-19 の経路を正確に予測するのに役立ちます。同様に、AI 対応システムは、患者が緊急治療室に入ったときに医師が病気の拡散を検出し、迅速な診断を行って効果的な隔離および検疫手順を可能にするのに役立ちます。

  • 全体的なコストを削減

AI は、特定のプロセスの実行にかかる時間とコストを大幅に削減するのに役立ちます。たとえば、AI は病気の兆候を検出するために何百万もの画像を分析できます。これにより、コストのかかる手作業が不要になります。患者は迅速かつ効果的に治療されるため、入院、待ち時間、ベッドの必要性が減るなど、さまざまな利点があります。

最近の調査では、AI 自動化によって次のような複数の分野で大幅なコスト削減が実現すると予測されています。

  • 投薬ミスの削減 – 160億ドル
  • ロボット支援手術 – 400億ドル
  • 管理ワークフロー支援 – 180億ドル
  • バーチャル看護助手 – 200億ドル
  • 不正検出 – 170億ドル

当社の DBMR チームは、低侵襲医療ロボット、画像および視覚化システム、手術器具市場を調査し、市場が 2028 年までに 912 億 2,000 万米ドルに達し、上記の予測期間中に 8.6% の CAGR で成長することを確認しました。北米地域は、事故による負傷率が高く、高齢者人口が多いことから、低侵襲医療ロボット、画像および視覚化システム、手術器具市場をリードしています。アジア太平洋地域は、交通事故、日本と中国における高齢者人口の増加、新興経済により、この特定の地域で MIS 手順の出現が促進されることが予想されるため、2021 年から 2028 年の予測期間中に大幅な成長率で拡大すると予想されています。

この研究の詳細については、以下をご覧ください。https://www.databridgemarketresearch.com/jp/reports/global-minimally-invasive-medical-robotics-imaging-visualization-systems-surgical-instruments-market

ヘルスケア分野へのAIの導入

AI は医薬品の開発に大きく関与しており、合理的な医薬品設計、意思決定の支援、患者に適した治療法の理解 (パーソナライズされた医薬品を含む)、将来の医薬品開発のために生成され使用される臨床データの管理などが可能になります。たとえば、Eularis が開発した分析および意思決定 AI プラットフォームである E-VAI は、機械学習アルゴリズムを使用して、競合他社、主要な利害関係者、現在の市場シェアに基づく分析ロードマップを作成し、医薬品の販売における主要な推進要因を予測します。これにより、マーケティング担当役員は市場シェアを最大限に獲得するためにリソースを割り当てることができ、投資先を予測することもできます。

AI は創薬において重要な役割を果たしています。AI はヒット化合物とリード化合物を認識し、短時間で薬物ターゲットの検証を迅速化し、薬物構造設計を最適化できます。AI は創薬のさまざまな側面で幅広く応用されています。以下に説明します。

Pharmaceutical Market of AI at a Glance

AI には利点があるにもかかわらず、データの規模、増加、多様性、不確実性など、いくつかの重大なデータ課題があります。さまざまな製薬会社の医薬品開発に利用できるデータセットには、何百万もの化合物が含まれる可能性があり、従来の ML ツールではこのような問題に対処できません。

たとえば、定量的構造活性相関 (QSAR) ベースの計算モデルでは、多数の化合物や、log P や log D などの単純な物理化学的パラメータを短時間で予測できます。さらに、QSAR ベースのモデルは、トレーニング セット内の実験データ エラー、トレーニング セットの小ささ、実験検証の欠如などの深刻な問題にも直面しています。

数多くの in silico 手法と仮想化学空間からの仮想スクリーニング化合物が導入されており、これらを構造およびリガンドベースのアプローチと組み合わせることで、プロファイル分析の改善、非リード化合物の迅速な排除、およびコスト削減による薬物分子の選択が可能になります。クーロン マトリックスや分子指紋認識などの薬物設計アルゴリズムは、物理的、化学的、および毒物学的プロファイルを考慮して、リード化合物の選択に役立ちます。

弊社の DBMR チームは、インシリコ創薬市場を調査し、急速な技術進歩、強力なベンダーの存在、さまざまな慢性疾患や感染症に苦しむ患者数が多いことから、北米地域がインシリコ創薬市場をリードしていることを確認しました。アジア太平洋地域は、研究者数の増加とがんや糖尿病の広範な研究により、大幅な成長率で拡大すると予想されています。また、バイオマーカー識別分野の高成長と、再入院率と医療過誤の削減への重点も、世界市場の成長に貢献すると予想されています。

この研究の詳細については、以下をご覧ください。https://www.databridgemarketresearch.com/jp/reports/global-in-silico-drug-discovery-market

創薬に使用される AI ツールのリスト

さまざまな AI ツールが、創薬に広く使用されています。LimTox、admetSAR、Toxtree、pkCSM などの Web ベースのツールは、さまざまなアッセイのコスト削減に役立ちます。高度な AI ベースのアプローチは、主に化合物の類似性を探したり、入力機能に基づいて化合物の毒性を予測したりします。このようなツールのもう 1 つの例としては、化合物の毒性と多くの小さな有機分子の合成可能性を推定し、その精度は 72% にも達する eToxPred があります。化合物の毒性を予測するのに役立つ他のツールも多数あります。多くの場合、FDA 承認薬の中には、できるだけ早く予測する必要がある深刻な有害事象があります。これらの AI ツールは、この点で使用されます。AI ツールは多岐にわたりますが、ここではいくつかのツールについて説明します。

Pharmaceutical Market of AI at a Glance

AIによる医薬品市場の概要

多くの製薬会社は、実験に関連する金銭的コストと失敗の可能性を減らすために、AIへとシフトしています。AI市場は2015年の2億ドルから2018年には7億ドルに増加し、2024年までに50億ドルに達すると予測されています。AIは製薬および医療分野に革命を起こすと期待されており、2017年から2024年の間に40%の成長が見込まれています。多くの製薬会社は大規模な投資を行っており、人工知能への投資を継続しており、重要なヘルスケアツールを開発するために複数のAI企業と提携しています。たとえば、Googleの子会社であるDeepMind TechnologiesとRoyal Free London NHS Foundation Trustのコラボレーションがあり、急性腎障害の支援に使用されています。別の例としては、Boehringer IngelheimとHealXがあり、希少神経疾患の治療法を見つけるために協力しました。Eli Lilly and CompanyとAtomwiseは、新しいタンパク質標的に対する薬剤の開発で協力しました。リストに載っているもう 1 つの例は、Mateon Therapeutics と PointR Data のコラボレーションで、末期の黒色腫、膵臓がん、神経膠腫の治療に役立っています。F. Hoffmann-La Roche と Owkin は、機械学習アルゴリズムに基づく臨床試験を数多く実施してきました。

AIベースの高度なアプリケーション

  • 薬物送達のための AI ベースのナノロボット

ナノロボットは主に集積回路、センサー、電源、安全なデータバックアップで構成され、AIなどの計算技術によって維持されます。衝突を回避し、ターゲットを識別し、検出して付着し、最終的に体から排出するようにプログラムされています。ナノ/マイクロロボットの最新の進歩により、pHなどの生理学的条件に基づいてターゲット部位に移動できるようになり、有効性が向上し、全身の副作用が軽減されます。

投与量の調整、持続放出、制御放出、適切な薬剤送達のために制御する必要がある薬剤の放出など、多くのパラメータを考慮する必要があります。マイクロチップインプラントは、インプラントのプログラムされた放出だけでなく、体内のインプラントの適切な位置を検出するために使用されます。

当社の DBMR チームはナノロボット市場を調査し、ナノロボット技術の採用の増加により北米がナノロボット市場を支配していることを確認しました。さらに、高度な医療インフラの存在により、予測期間中にこの地域のナノロボット市場の成長がさらに促進されます。顕微鏡の応用分野の増加と顕微鏡と分光法の統合により、今後数年間でナノロボット市場の成長に潜在的な機会がもたらされると予測されています。

この研究の詳細については、以下をご覧ください。https://www.databridgemarketresearch.com/jp/reports/global-nanorobots-market

  • ナノ医療におけるAIの出現

ナノテクノロジーの使用は確実に増加しています。科学者は医療分野でこの方法論にますます依存し、関与しています。ナノ医薬品は、HIV、がん、マラリア、喘息、さまざまな炎症性疾患など、多くの複雑な疾患の診断と治療に使用されています。近年、ナノ粒子で修飾された薬物送達は、その効能と治療の向上により、治療と診断の分野で必要になっています。ナノテクノロジーをAIと組み合わせると、製剤開発における多くの問題を解決できます。たとえば、AI支援によるシリカソームの調製。シリカソームは、腫瘍浸透性ペプチドであるiRGDと、イリノテカンを充填した多機能メソポーラスシリカナノ粒子の組み合わせです。iRGDはシリカソームのトランスサイトーシスの改善に役立つため、ナノ医薬品はシリカソームの取り込みを3〜4倍に増加させました。

  • 複合薬物送達と相乗効果/拮抗効果予測における AI

結核や癌などの複雑な病気を治療するために、患者の早期回復に相乗効果をもたらすいくつかの新しい薬剤の組み合わせが承認され、販売されています。この組み合わせに選ばれる可能性のある薬剤は、相当数の薬剤のハイスループットスクリーニングを必要とするため、プロセスが面倒になります。たとえば、がん治療では 6 種類または 7 種類の薬剤の組み合わせが行われます。Rashid らは、2 次表現型最適化プラットフォームのモデルを開発しました。このモデルは、FDA 承認の薬剤 114 種類からボルテゾミブ耐性多発性骨髄腫の治療に最適な併用療法を見つけるために使用されます。このモデルに含まれる最適な 2 つの薬剤は、デシタビン (Dec) とマイトマイシン C (MitoC) です。

AI の高度な応用に加えて、AI は市場でのポジショニングにおいても重要です。テクノロジーと電子商取引の容易さにより、すべての企業がパブリック プラットフォームで自社のブランドを宣伝することが容易になりました。最もよく使用されるツールの 1 つは SEO です。ほとんどの企業は SEO を使用してオンライン マーケティングで固定されたポジションを占め、市場での製品のポジショニングを支援します。企業は常にゲーム内でのポジションをより高い位置に維持しようと努め、短期間で自社のブランドを認知させています。

当社の DBMR チームは、電子商取引パッケージング市場を調査し、アジア太平洋地域が市場シェアと収益の面で電子商取引パッケージング市場を支配しており、予測期間中にその優位性を維持し続けることを目の当たりにしました。これは、インド、中国、日本などの成長国で段ボール箱に対する消費者の好みが高まっているためです。中国はアジア太平洋市場をリードしています。Covid-19 は市場の成長を加速させました。Covid-19 は人と物資の移動を制限しました。食料品、医薬品、野菜、その他の製品などの必需品の需要が増加したため、電子商取引はパンデミックで重要な役割を果たしました。

この研究の詳細については、以下をご覧ください。https://www.databridgemarketresearch.com/jp/reports/global-e-commerce-packaging-market

結論:

人工知能とその優れたツールの進歩により、製薬会社は多くの面で有利になっています。これは医薬品開発プロセスと製品のライフサイクル全体に影響を与え、その結果、新興企業数の増加が容易に説明できます。ヘルスケア部門は、医薬品や治療法のコスト増加など、多くの課題に直面しています。社会はこの分野で大きな変化を必要としており、それを重視する必要があります。デジタルヘルスの時代が進み、AIが普及するにつれて、個々の患者のニーズに応じて製造できる、望ましい投与量、放出パラメータ、およびその他の必要な側面を備えたパーソナライズされた医薬品も登場しています。AIベースのテクノロジーは、製品が市場で稼働するまでの時間を短縮するのに役立つだけでなく、製品の改善と製造プロセスの全体的な安全性にも役立ちます。

さらに、コスト効率が高く利用可能なリソースをより有効に活用できるため、自動化の重要性が高まります。 この側面に加えて、これらのテクノロジーの実装に関連する最大の懸念は、それに伴う雇用の喪失と、AI の運用に必要な厳格な規制です。 ただし、これらのシステムは人間の単純さを促進するのに役立ちますが、完全に置き換えるものではありません。 多くのマーチャントは、標準製品に AI コンポーネントを含めるか、AI-as-a-service (AIaaS) プラットフォームへのアクセスを提供しています。 AI のハードウェア、ソフトウェア、および人員コストは高額になる可能性があります。 AIaaS の重要性は、個人や企業がさまざまなビジネス目的で AI を試すことができることです。 AI のさまざまなサブフィールド、つまり機械学習、ニューラル ネットワーク、ディープラーニングも、創薬に同様に役立ちます。 これらのほかにも、コンピューター ビジョン、モノのインターネット、高度なアルゴリズム、グラフィック処理ユニットなど、AI をサポートおよび可能にするテクノロジーがいくつかあります。


お客様の声