データを使用して行動方針を決定したり予測したりするアルゴリズムやコンピュータ プログラムは、人工知能と呼ばれます。コンピュータがデータを調べて判断を下せるように、科学者はコンピュータが従うべき一連のルールや指示を開発する場合があります。機械学習は、システムがデータの評価方法と理解方法を自ら学習する別の人工知能技術です。その結果、機械学習アルゴリズムは、人間の目や脳では認識しにくいパターンを見つけることができます。さらに、これらのアルゴリズムは、より新しい情報にさらされるにつれて、データの学習と解釈の精度が向上します。
Data Bridge Market Researchは、ヘルスケア市場における人工知能は、2022年から2029年の予測期間中に51.37%のCAGRで成長すると予測しています。これは、2021年に63億5,000万米ドルであった市場価値が、2029年までに1,752億2,000万米ドルにまで急上昇することを示しています。2019年1月、英国のダートフォード・アンド・グレイブシャムNHSトラストは、病院からの退院時に患者をモニタリングするためのAI搭載ウェアラブル技術を開発しました。2019年10月、care.aiとNVIDIAは、NVIDIAのプラットフォームを活用したヘルスケアにおける人工知能搭載の自律患者モニタリングを提供するためのコラボレーションを発表しました。
この研究の詳細については、以下をご覧ください。https://www.databridgemarketresearch.com/jp/reports/global-artificial-intelligence-in-healthcare-market
機械学習のサブセットであるディープラーニングは、がん画像診断の分野でも研究者によって応用されています。ディープラーニングとは、人間の脳に似た方法でデータを分類するアルゴリズムを指します。ディープラーニング技術では、人工ニューラルネットワークを使用して、脳細胞が体の他の部分からのメッセージをどのように受信、解釈、応答するかをシミュレートします。腫瘍ががん性かどうかを判断するために、医師はがん画像診断検査を行います。がんの場合、どのくらいの速さで進行していますか?転移はどの程度ですか?治療を受けてから回復しましたか?研究によると、AIは医療専門家の対応の迅速性、精度、信頼性を高める可能性があります。腫瘍学におけるAIの応用は、さまざまな段階で理解できます。
図1: 腫瘍学におけるAIの役割
- がんを早期発見するには マンモグラフィーやパップテストなどの検査法を使用して、がんの兆候やがんに発展する可能性のある細胞がないか、人々は日常的に検査されています。その目的は、がんが広がる前、あるいは大きくなる前に、早期にがんを特定して治療することです。乳がんスクリーニング検査やその他のがんスクリーニング検査を支援するために、科学者は AI 技術を開発しました。過去 20 年間、AI ベースのコンピューター アルゴリズムは、医師がマンモグラムを解読するのを支援してきましたが、この研究分野は急速に発展しています。あるチームは、女性が乳がんの検査を受ける頻度を決定するのに役立つ AI システムを開発しました。このアルゴリズムは、マンモグラムの結果に基づいて、今後 5 年以内に乳がんを発症する可能性を予測します。このモデルは、現在の乳がんリスク予測方法よりもテストで優れたパフォーマンスを発揮しました。NCI の研究者は、除去または治療が必要な子宮頸部前がんを認識できるディープラーニング アルゴリズムを開発し、テストしました。一部のリソースが限られている状況では、医療専門家が小さなカメラで子宮頸部を検査し、子宮頸部前がんの有無を確認します。このアプローチは単純で持続可能ですが、あまり正確で信頼できるものではありません。臨床研究では、大腸がんにつながる可能性のある前がん状態の腫瘍である腺腫の診断を改善するために、いくつかの AI 技術が実証されている。一部の専門家は、腺腫ががんに発展するのはごく一部であるため、これらの AI 技術によって多くの人が不必要な治療や追加検査を受けることを余儀なくされるのではないかと懸念している。
- がんの検出と診断 - AI は、すでに兆候が現れている人のがんを早期に診断するのに役立つ能力を持っています。たとえば、NCI がん研究センターのタークベイ博士と彼の同僚が作成した AI モデルは、マルチパラメトリック MRI と呼ばれる比較的新しいタイプの前立腺 MRI スキャンで、悪性度の高い可能性のある前立腺がんを放射線科医が簡単に特定できるようにする可能性があります。タークベイ博士によると、NCI チームが開発した AI モデルは、「エラー率を最小限に抑え、現役の放射線科医の [学習] 曲線を容易にする可能性があります」。同博士は、この AI モデルは、マルチパラメトリック MRI の使用を学習している経験の浅い放射線科医にとって「仮想の専門家」として機能する可能性があると述べました。多くのディープラーニング AI モデルは、臨床医が CT スキャンで肺がんを検出するのを支援するために開発されています。肺の非がん性の異常の一部は、CT スキャンではがんと非常によく似ているように見えることがあるため、実際には肺がんではないのに肺がんであると示す偽陽性の検査結果がかなりの割合で存在します。理論的には、AI は CT 画像で肺がんと非がん性の変化をより正確に区別することで、偽陽性の発生率を減らし、一部の患者を不必要なストレス、追跡検査、手術から救うことができるかもしれない。研究者チームは、肺がんを発見し、がんに似た他の変化を回避するためのディープラーニング アルゴリズムを作成した。
- がん治療の選択- 医師はまた、がんの進行速度、転移の有無、治療後に再発する可能性があるかどうかなど、がんに関する重要なデータを集めるために画像検査を使用します。医師はこの情報を使用して、患者にとって最善の治療法を決定できます。多くの研究により、AI は現在の人間よりも正確かつ包括的に画像スキャンから予後データを抽出できる可能性があることが示されています。たとえば、ハーモン博士とその同僚が開発したディープラーニング モデルは、膀胱がんの患者が手術に加えて追加の治療を必要とするリスクを予測できます。医療専門家によると、膀胱筋に腫瘍がある人の約 50% で膀胱の外に移動したがん細胞のクラスター (筋層浸潤性膀胱がん) は、従来の方法では検出できないほど小さいです。これらの検出されない細胞は、除去されなければ手術後に増殖し続け、再発につながる可能性があります。これらの小さなクラスターは化学療法で除去でき、手術後のがんの再発を防ぐことができます。しかし、臨床試験で実証されているように、患者が化学療法も必要かどうかを特定するのは難しいかもしれないとハーモン博士は言う。このモデルは、元の腫瘍組織のデジタル画像を分析して、周囲のリンパ節に顕微鏡的な癌の集まりがあるかどうかを判断します。2020年に発表された研究では、ディープラーニングモデルは、患者の年齢や特定の腫瘍の特徴など、いくつかの変数に基づいて膀胱癌が広がっているかどうかを予測する従来の方法よりも優れた結果を示しました。最善の治療法を決定するために、患者の癌の遺伝子構成の研究がますます増えています。中国の研究者は、組織の写真から肝臓癌組織内の重要な遺伝子変異の存在を予測するディープラーニングアルゴリズムを開発しました。これは、病理学者が画像を見るだけでは達成できないことです。アルゴリズムを作成した科学者は、腫瘍にどの遺伝子変化が存在するかをアルゴリズムがどのようにして判断するかを知らず、彼らのツールは驚くべき方法で動作するAIの例となっています。
- 医療画像におけるAI - がんの予測には、AI と機械学習の恩恵を受けることができます。人工知能は、すでに転移している悪性腫瘍や、がんになるリスクが高い人を、がんになる前に発見することができます。これにより、医療専門家はこれらの患者を注意深く監視し、必要に応じて迅速に対応することができます。MIT のコンピューター科学者 Regina Barzilay は、がん予測のための人工知能 (AI) のテストに興味を持っていました。MIT チームは、明らかな症状が現れる前に乳がんのリスクがある女性を特定する可能性を検討しました。どの患者ががんにかかっているかを調べるために、彼女は 4 年間で 40,000 人以上の女性のマンモグラム (合計約 89,000 枚) を収集し、スキャンを全国腫瘍登録と比較しました。次に、Regina はこれらの写真の一部を使用して、一種の AI である機械学習 (ML) アルゴリズムをトレーニングし、そのアルゴリズムを使用して予測を生成しました。このアルゴリズムは、将来の乳がん患者の 30% が高リスクグループに属すると正しく特定しました。AI は、医療画像の分野でさまざまな用途があります。悪性腫瘍の特定と分類は、最も明白な用途の 1 つです。 FDAは2021年9月、AIを活用したがん病理学ツールであるPaige Prostateを承認しました。FullFocusデジタル病理学ビューアと併用することで、このAIツールは前立腺がんの検出に役立ちます。FDAは、この承認の前提条件として、16人の病理学者ががんの指標を探すために527枚の前立腺生検写真を評価した臨床調査のデータを検討しました。
- 血液検査におけるAI - AI 強化による血液検査は、医師がより正確にがんを検出できるように支援します。Cancer Cell International の研究によると、AI アルゴリズムを使用して血漿 ctDNA および miRNA プロファイルを分析する血液プロファイリングは、従来の CT スキャンよりも効果的にがんを発見し、監視する方法です。ジョンズ ホプキンス キンメル キャンサー センターの研究者は、血液検査で肺がんを検出する最先端の AI ベースの技術を開発しました。この方法をテストするために、米国、デンマーク、オランダの 796 人の参加者の血液サンプルが使用されました。研究者は、この血液検査をタンパク質バイオマーカー、臨床リスク要因、患者の CT スキャンと組み合わせました。その結果、病気の初期段階の人の 91%、進行期の患者の 96% でがんを正しく特定できました。
- 免疫療法におけるAI 免疫療法における AI の主な機能は、さまざまな療法の結果を評価し、医師が処方箋を変更するのを支援することです。MD アンダーソンがんセンターとテキサス大学サウスウェスタン医療センターの研究チームにより、患者の免疫系が新抗原 (がん細胞のゲノムが変異したときに生成されるペプチド) を認識するかどうかを判断するための AI を利用した方法が開発されました。このような AI アルゴリズムにより、がん細胞が免疫療法にどのように反応するかを予測できるようになります。私たちの免疫系の T 細胞は、がんやその他の侵襲性生物の兆候を常に監視しています。これらの細胞は、新抗原を特定すると互いに結合します。ただし、一部の新抗原は特定されず、がんの拡散を促進します。この情報により、免疫療法に対する患者の反応を予測し、個別化された T 細胞ベースの治療法やがんワクチンを作成できるようになります。
免疫腫瘍学(IO)市場は、2022年から2029年の予測期間に8.90%の市場成長率を示すことが期待されています。免疫腫瘍学(IO)市場は、タイプ、ターゲット、適応症、エンドユーザー、流通チャネルに基づいてセグメント化されています。アジア太平洋地域では、がん免疫療法の採用において好調な成長率が著しく増加すると予測されています。さらに、病気の発生率の上昇とそれに伴う死亡率の上昇により、今後数年間でこの地域の免疫腫瘍学(IO)市場の成長がさらに促進されると予想されます。
この研究の詳細については、以下をご覧ください。https://www.databridgemarketresearch.com/jp/reports/global-immuno-oncology-market
- 医薬品開発 - 同じ薬でも、がんの種類によって反応が異なる場合があります。AI は、さまざまな薬が悪性細胞にどのような影響を与えるかを予測できます。この情報は、新しい抗がん剤の開発や使用時期の決定に役立ちます。たとえば、がん細胞の変異状態に応じて、研究チームは抗がん剤の作用を予測できるランダム フォレスト アルゴリズムを作成しました。
腫瘍学における AI の利点
AI は一般的に医療分野で多くの利点を持っています。がんの検出と治療に人工知能を使用することで得られる主な 3 つの利点は次のとおりです。
図2: 腫瘍学におけるAIの利点
- 個別化医療と治療法 - ビッグデータと AI により、医療専門家は患者とがん細胞に関するさまざまなデータを調べ、個別化された治療法を開発できます。この種の治療の副作用はそれほど深刻ではありません。健康な細胞への害は少なくなりますが、がん細胞への影響は大きくなります。AI は、どの腫瘍や異常ががん性で、真の医療介入が必要であるかを放射線科医が判断するのに役立ちます。国立がん研究所ジャーナルの研究によると、AI アルゴリズムは子宮頸部画像で前がん病変を識別し、他の異常と区別して、患者が小さな問題のために不必要な治療を受けないようにすることができます。
- 侵襲的処置の排除 - 腫瘍の良性は切除手術後に初めて発見されることもあり、その場合は手術を完全に避けることができたはずです。このような事態は、がん検出プロセスにおける AI の支援により大幅に減少します。たとえば、ある研究では、AI によって乳房温存手術を 30.6% 削減できることがわかっています。画像誘導針生検は、機械学習アルゴリズムを訓練して悪性腫瘍を認識させるために使用できます。ランダム フォレスト ML システムを使用して 335 人の潜在的ながん患者を評価したところ、研究者は不要な手術の 3 分の 1 を回避できることを発見しました。
- 誤検知と誤検知の削減 - がん検出のための AI は、診断の精度を高め、偽陽性と偽陰性を減らすでしょう。乳がん検出に関する研究のおかげで、その証拠があります。医師によるマンモグラフィー検査を受けた女性患者の 10 人に 1 人は偽陽性の結果が出ており、ストレスの多い処置や不要な侵襲的検査を強いられています。Google の研究チームは、AI を使用してマンモグラフィーの偽陽性と偽陰性をそれぞれ 6% と 9% 削減するソフトウェアを作成しました。別の研究チームは、乳がんの識別のための AI アルゴリズムを作成しました。このアルゴリズムは、放射線科医が検査中に偽陽性率を 37.3% 削減するのに役立ちました。
腫瘍学における AI の課題と将来の展望
複雑な非線形相互作用、フォールト トレランス、同時分散処理、学習はすべて、AI が簡単に処理できるタスクです。これは、自己適応、定量的および定性的な情報の同時処理、およびさまざまな領域での多数の臨床研究からの検証済み結果の利点によるものです。AI がさまざまな方法で臨床ケアに使用されていることは間違いありません。AI は、臨床的変動性のさまざまな側面を最大限に活用すると同時に、エキスパート システムの普遍性と客観性の欠如にも対処します。病院は、AI を使用して、臨床診断と意思決定について若手医師をトレーニングできます。ML ベースのコンピューター システムの優れた診断および予後機能について議論する学術論文が増えています。
がんの診断と予後への応用を確実にするために、AI 技術は克服しなければならないいくつかの重大な困難に直面しています。たとえば、医療画像からの生の入力データは使用できません。画像データから情報を処理して抽出することが不可欠です。ニューラル ネットワーク モデルの重み係数の結果を解釈するには、さらなる研究が必要です。ニューラル ネットワーク モデルの重み係数は、技術の発展と広範な採用により検証、計算され、十分な信頼区間を持っています。臨床医学の分野では、ANN の研究が進むにつれて、おそらくより頻繁に使用されるようになるでしょう。この業界での AI の価値は認められていますが、コンピューター サイエンティストと医療専門家は協力して、学際的なスタッフ メンバーがトレーニングを受け、協力できるようにする必要があります。そうすれば、医療専門家はこの技術の可能性を費用対効果が高く実用的な方法で活用できます。プライバシーとデータ セキュリティの保証は、医療における AI の将来に関連する大きな問題です。「ビッグ データ」と ML ベースのソリューションは近年大きな注目を集めていますが、AI が臨床診療にどのように影響したかを示す事例は現在ほとんどありません。
Data Bridge Market Researchは、がん診断市場は予測期間中に7.29%のCAGRで成長し、2029年までに282億1,000万米ドルの価値に達すると予測しています。がん患者数の増加は、市場に成長の機会をもたらします。がんは世界で2番目に多い死因であり、2020年までに1,000万人が亡くなると予測されています。がんは、世界中の死亡者の約6分の1を占めています(出典:世界保健機関)。2020年には、1,930万人の新たながん症例が報告され、その数は2040年までに3,020万人に増加すると予想されています。がん発症率のこの増加は、高齢者人口と総人口の増加に起因しています。
この研究の詳細については、以下をご覧ください。https://www.databridgemarketresearch.com/jp/reports/global-cancer-diagnostics-market